Python酷库之旅-第三方库Pandas(021)

news2024/11/15 1:42:16

目录

一、用法精讲

52、pandas.from_dummies函数

52-1、语法

52-2、参数

52-3、功能

52-4、返回值

52-5、说明

52-6、用法

52-6-1、数据准备

52-6-2、代码示例

52-6-3、结果输出

53、pandas.factorize函数

53-1、语法

53-2、参数

53-3、功能

53-4、返回值

53-5、说明

53-6、用法

53-6-1、数据准备

53-6-2、代码示例

53-6-3、结果输出 

54、pandas.unique函数

54-1、语法

54-2、参数

54-3、功能

54-4、返回值

54-5、说明

54-6、用法

54-6-1、数据准备

54-6-2、代码示例

54-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

52、pandas.from_dummies函数
52-1、语法
# 52、pandas.from_dummies函数
pandas.from_dummies(data, sep=None, default_category=None)
Create a categorical DataFrame from a DataFrame of dummy variables.

Inverts the operation performed by get_dummies().

New in version 1.5.0.

Parameters:
data
DataFrame
Data which contains dummy-coded variables in form of integer columns of 1’s and 0’s.

sep
str, default None
Separator used in the column names of the dummy categories they are character indicating the separation of the categorical names from the prefixes. For example, if your column names are ‘prefix_A’ and ‘prefix_B’, you can strip the underscore by specifying sep=’_’.

default_category
None, Hashable or dict of Hashables, default None
The default category is the implied category when a value has none of the listed categories specified with a one, i.e. if all dummies in a row are zero. Can be a single value for all variables or a dict directly mapping the default categories to a prefix of a variable.

Returns:
DataFrame
Categorical data decoded from the dummy input-data.

Raises:
ValueError
When the input DataFrame data contains NA values.

When the input DataFrame data contains column names with separators that do not match the separator specified with sep.

When a dict passed to default_category does not include an implied category for each prefix.

When a value in data has more than one category assigned to it.

When default_category=None and a value in data has no category assigned to it.

TypeError
When the input data is not of type DataFrame.

When the input DataFrame data contains non-dummy data.

When the passed sep is of a wrong data type.

When the passed default_category is of a wrong data type.
52-2、参数

52-2-1、data(必须)一个DataFrame对象,包含了哑变量(0和1)的列,每列通常表示一个类别的存在或缺失。

52-2-2、sep(可选,默认值为None)用于分隔哑变量列名中类别信息的分隔符。例如,如果列名是A_cat和A_dog,并且用下划线分隔,那么sep应该设置为 _

52-2-3、default_category(可选,默认值为None)在原始数据中,可能有一些类别在哑变量中缺失,这个参数允许指定一个默认类别,以便在缺失的情况下使用。

52-3、功能

        接受一个包含哑变量的DataFrame,并将其转换回表示原始类别的DataFrame,哑变量通常是通过对分类变量进行独热编码(one-hot encoding)生成的。

52-4、返回值

        返回值是一个DataFrame,其中包含了原始的分类数据,这些数据是根据哑变量的值重构的,即每行数据中值为1的哑变量列对应的列名(去掉分隔符和前缀)即为原始分类变量的值。

52-5、说明

        该函数非常有用,特别是在对数据进行独热编码之后希望恢复原始分类变量的情况下,它简化了数据预处理模型结果解释的过程。

52-6、用法
52-6-1、数据准备
52-6-2、代码示例
# 52、pandas.from_dummies函数
import pandas as pd
# 示例哑变量DataFrame
data = pd.DataFrame({
    'color_red': [1, 0, 0],
    'color_blue': [0, 1, 0],
    'color_green': [0, 0, 1]
})
# 使用pandas.from_dummies将哑变量转换回原始分类数据
original_data = pd.from_dummies(data, sep='_')
print(original_data)
52-6-3、结果输出
# 52、pandas.from_dummies函数
#    color
# 0    red
# 1   blue
# 2  green
53、pandas.factorize函数
53-1、语法
# 53、pandas.factorize函数
pandas.factorize(values, sort=False, use_na_sentinel=True, size_hint=None)
Encode the object as an enumerated type or categorical variable.

This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method Series.factorize() and Index.factorize().

Parameters:
valuessequence
A 1-D sequence. Sequences that aren’t pandas objects are coerced to ndarrays before factorization.

sortbool, default False
Sort uniques and shuffle codes to maintain the relationship.

use_na_sentinelbool, default True
If True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values.

New in version 1.5.0.

size_hintint, optional
Hint to the hashtable sizer.

Returns:
codesndarray
An integer ndarray that’s an indexer into uniques. uniques.take(codes) will have the same values as values.

uniquesndarray, Index, or Categorical
The unique valid values. When values is Categorical, uniques is a Categorical. When values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is returned.

Note

Even if there’s a missing value in values, uniques will not contain an entry for it.
53-2、参数

53-2-1、values(必须)需要编码的数组或序列,可以是列表、NumPy数组、Pandas系列等。

53-2-2、sort(可选,默认值为False)是否对唯一值数组进行排序,如果为True,返回的唯一值数组将按字典顺序排序。

53-2-3、use_na_sentinel(可选,默认值为True)是否在输出整数数组中使用-1作为NaN的标记,如果为False,则将NaN也编码为一个唯一的整数。

53-2-4、size_hint(可选,默认值为None)一个整数提示,用于内部优化,指示预期的唯一值的数量,这可以提高大规模数据的处理性能。

53-3、功能

        将一组值(如列表、数组或序列)编码为整数索引。具体来说,它会为每个唯一值分配一个唯一的整数,并返回这些整数索引以及唯一值的数组。

53-4、返回值

        返回两个对象:

53-4-1、整数索引数组:一个与输入数组大小相同的整数数组,其中每个整数对应于输入数组中的一个值。

53-4-2、唯一值数组:一个包含输入数组中所有唯一值的数组,按它们首次出现的顺序排列,除非使用sort=True参数。

53-5、说明

        pandas.factorize的主要功能是:

53-5-1、将类别数据转换为整数索引:通过为每个唯一值分配一个整数,使得类别数据可以用于数值计算或进一步分析。

53-5-2、处理缺失值:可以选择是否将缺失值(NaN)编码为一个特定的整数(默认为-1)。

53-6、用法
53-6-1、数据准备
53-6-2、代码示例
# 53、pandas.factorize函数
# 53-1、基本用法
import pandas as pd
values = ['a', 'b', 'a', 'c', 'b']
factorized_values, unique_values = pd.factorize(values)
print(factorized_values)
print(unique_values)

# 53-2、使用sort参数
import pandas as pd
values = ['a', 'b', 'a', 'c', 'b']
factorized_values, unique_values = pd.factorize(values, sort=True)
print(factorized_values)
print(unique_values)

# 53-3、处理NaN
import pandas as pd
values_with_nan = ['a', 'b', None, 'a', 'c']
factorized_values, unique_values = pd.factorize(values_with_nan, use_na_sentinel=True)
print(factorized_values)
print(unique_values)

# 53-4、使用size_hint参数
import pandas as pd
large_values = ['a'] * 100000 + ['b'] * 100000
factorized_values, unique_values = pd.factorize(large_values, size_hint=2)
print(factorized_values[:10])
print(unique_values)
53-6-3、结果输出 
# 53、pandas.factorize函数
# 53-1、基本用法
# [0 1 0 2 1]
# ['a' 'b' 'c']

# 53-2、使用sort参数
# [0 1 0 2 1]
# ['a' 'b' 'c']

# 53-3、处理NaN
# [ 0  1 -1  0  2]
# ['a' 'b' 'c']

# 53-4、使用size_hint参数
# [0 0 0 0 0 0 0 0 0 0]
# ['a' 'b']
54、pandas.unique函数
54-1、语法
# 54、pandas.unique函数
pandas.unique(values)
Return unique values based on a hash table.

Uniques are returned in order of appearance. This does NOT sort.

Significantly faster than numpy.unique for long enough sequences. Includes NA values.

Parameters:
values
1d array-like
Returns:
numpy.ndarray or ExtensionArray
The return can be:

Index : when the input is an Index

Categorical : when the input is a Categorical dtype

ndarray : when the input is a Series/ndarray

Return numpy.ndarray or ExtensionArray.
54-2、参数

54-2-1、values(必须):可以是以下几种类型的对象:

  • 一维的pandas.Series
  • 一维的pandas.Index
  • 一维的numpy.ndarray
  • 一维的列表或序列
54-3、功能

        返回输入数组中的唯一值,按它们在数组中首次出现的顺序排列。

54-4、返回值

        返回一个numpy.ndarray,其中包含输入数组中的唯一值。

54-5、说明

        pandas.unique是一个简单且高效的函数,用于从一维数组、Series或Index中提取唯一值,它只需要一个参数,即要处理的数组,并返回一个包含唯一值的numpy.ndarray,这种功能在数据预处理清理阶段非常有用,可以帮助识别数据集中的独特元素。

54-6、用法
54-6-1、数据准备
54-6-2、代码示例
# 54、pandas.unique函数
# 54-1、处理列表
import pandas as pd
values = [1, 2, 2, 3, 4, 4, 4, 5]
unique_values = pd.unique(values)
print(unique_values)

# 54-2、处理pandas Series
import pandas as pd
series = pd.Series(['a', 'b', 'a', 'c', 'b', 'd'])
unique_values = pd.unique(series)
print(unique_values)

# 54-3、处理numpy数组
import pandas as pd
import numpy as np
array = np.array([1, 2, 3, 1, 2, 3, 4])
unique_values = pd.unique(array)
print(unique_values)

# 54-4、处理含有NaN的数据
import pandas as pd
values_with_nan = [1, 2, np.nan, 2, np.nan, 3]
unique_values = pd.unique(values_with_nan)
print(unique_values)
54-6-3、结果输出
# 54、pandas.unique函数
# 54-1、处理列表
# [1 2 3 4 5]

# 54-2、处理pandas Series
# ['a' 'b' 'c' 'd']

# 54-3、处理numpy数组
# [1 2 3 4]

# 54-4、处理含有NaN的数据
# [ 1.  2. nan  3.]

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925468.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络割接方案通用模板

第一章 项目概述 1.1 编写目的 为规范“十三五”以来,随着移动互联新技术的发展以及我国政府职能的不断转变, 我国的政法网络进入新的发展阶段,跨地域、跨部门、跨系统的信息共享、业务 协同以及智慧政务等成为了各地电子政务的重点建设内容。…

【Django+Vue3 线上教育平台项目实战】构建高效线上教育平台之首页模块

文章目录 前言一、导航功能实现a.效果图:b.后端代码c.前端代码 二、轮播图功能实现a.效果图b.后端代码c.前端代码 三、标签栏功能实现a.效果图b.后端代码c.前端代码 四、侧边栏功能实现1.整体效果图2.侧边栏功能实现a.效果图b.后端代码c.前端代码 3.侧边栏展示分类及…

自动化故障排查与运维团队建设策略

在当前的运维领域,自动化故障排查已成为提高运维效率、保障系统稳定性的关键手段。为了进一步提升故障排查能力,并建立高效的运维团队,以下策略值得深入考虑和实施。 一、自动化故障排查流程与工具 标准化故障排查流程 建立一套标准化的故…

121. 小红的区间翻转(卡码网周赛第二十五期(23年B站笔试真题))

题目链接 121. 小红的区间翻转(卡码网周赛第二十五期(23年B站笔试真题)) 题目描述 小红拿到了两个长度为 n 的数组 a 和 b,她仅可以执行一次以下翻转操作:选择a数组中的一个区间[i, j],&#x…

Nginx入门到精通五(动静分离)

下面内容整理自bilibili-尚硅谷-Nginx青铜到王者视频教程 Nginx相关文章 Nginx入门到精通一(基本概念介绍)-CSDN博客 Nginx入门到精通二(安装配置)-CSDN博客 Nginx入门到精通三(Nginx实例1:反向代理&a…

全球生成式AI 产品分析报告

全球生成式AI 产品研究报告 时代背景 全球进入AI驱动的生产革命,生成式技术是时代际遇。中美在生成式AI产业展开科技竞争,全栈组合拳拉锯发展。‍ 技术变革 Transformer架构优化模型泛化的训推能力与理解生成的内容能力。文本模态达高应用成熟度&…

OpenCV图像处理——获取穿过圆的直线与圆相交的两个点

在OpenCV中,没有直接的函数来计算直线与圆的交点,但可以通过数学方法来实现这一功能。以下是计算直线与圆交点的步骤,以及相应的C代码示例: 确定直线方程:使用直线上的两个点 P 1 ( x 1 , y 1 ) P1(x1, y1) P1(x1,y1)和…

旷野之间17 - 适合所有人的 Transformer

最初出现在著名论文《Attention is all your need》中,基于Transformer的架构已成为大多数成功的人工智能模型中必不可少的。 然而,许多用户甚至基于人工智能的产品的创造者可能不了解Transformer是什么或它是如何工作的。 嗯,阅读研究论文…

MVC之 IHttpModule管道模型《二》

》》》注意:在http请求的处理过程中,只能调用一个HttpHandler,但可以调用多个HttpModule。 HTTP Modules ASP.NET请求处理过程是基于管道模型的,这个管道模型是由多个HttpModule和HttpHandler组成,当请求到达HttpMod…

Linux 扩展硬盘容量

根分区的硬盘容量不够了需要添加容量 扩展硬盘容量前提是需要虚拟机关机才能进行以下操作 在虚拟中找到虚拟机设置 >> 点击硬盘 >> 选择扩展 >> 输入自已要扩展的大小 >> 确定 这些设置好之后,启动虚拟机 fdisk /dev/sda n p 三个回车…

Nginx入门到精通七(Nginx原理)

下面内容整理自bilibili-尚硅谷-Nginx青铜到王者视频教程 Nginx相关文章 Nginx入门到精通一(基本概念介绍)-CSDN博客 Nginx入门到精通二(安装配置)-CSDN博客 Nginx入门到精通三(Nginx实例1:反向代理&a…

基于matlab的SVR回归模型

1 原理 SVR(Support Vector Regression)回归预测原理,基于支持向量机(SVM)的回归分支,其核心思想是通过寻找一个最优的超平面来进行回归预测,并处理非线性回归问题。以下是SVR回归预测原理的系统…

猴子吃桃(迭代算法)

猴子与桃纠缠 传说很久很久以前,一只小猴子听妈妈的话,不远万里,爬山涉水专门跑到王母娘娘的蟠桃园里偷桃子吃,小猴子趁王母娘娘闭关修炼,偷了许多桃子,直到被蟠桃园的守卫发现,才恋恋不舍的逃走…

AWS-S3实现Minio分片上传、断点续传、秒传、分片下载、暂停下载

文章目录 前言一、功能展示上传功能点下载功能点效果展示 二、思路流程上传流程下载流程 三、代码示例四、疑问 前言 Amazon Simple Storage Service(S3),简单存储服务,是一个公开的云存储服务。Web应用程序开发人员可以使用它存…

oracle数据库的plsql免安装版安装

这个是连接oracle数据库的,注意安装不能有中文路径。以下只是示例。 1、打开D:\ruanjian\plsql\plsql\plsql,发送plsqldev.exe快捷方式到桌面。 2、新弹出的页面填写cancel,什么也不写。 3、将instanceclient解压,并复制文件路径。 修改tool…

mysql5.7版本字符集编码

默认character_set_databaselatin1 当你字段插入中文值的时候,会报错。 所以修改为了character_set_databaseutf8既可以。 character_set_server他的范围更大,属于服务器级别。

非常好的新版网盘系统,是一款PHP网盘与外链分享程序,支持文件预览

这是一款PHP网盘与外链分享程序,支持所有格式文件的上传, 可以生成文件外链、图片外链、音乐视频外链,生成外链同时自动生成相应的UBB代码和HTML代码, 还可支持文本、图片、音乐、视频在线预览,这不仅仅是一个网盘&a…

【Java】 条件与选择

文章目录 1.关系操作符2.逻辑操作符3.if语句3.1常见的问题3.2 两个浮点数值的相等测试3.3 简化布尔赋值 4.switch语句5.三元操作符 1.关系操作符 Java 提供六种关系操作符(relational operator)(也称为比较操作符(comparison operator)) 操作符名称<小于<小于等于>大…

张雪峰高考志愿填报

描述 张雪峰&#xff0c;一个富有才华的老师&#xff01; 对于大家的学习有不可多得的帮助。 内容 目前主要的内容以自愿填报为主&#xff0c;对于学习自愿填报有比较大的帮助&#xff01; 但是网络上面错综复杂&#xff0c;很多老旧的版本影响学习&#xff01; 而这里我整…

现在有哪些微服务解决方案?

Dubbo&#xff1a;是一个轻量级的Java微服务框架&#xff0c;最初由阿里巴巴在2011年开源。它提供了服务注册与发现、负载均衡、容错、分布式调用等。Dubbo更多的被认为是一种高性能的RPC框架&#xff08;远程过程调用&#xff09;&#xff0c;一些服务治理功能依赖第三方组件完…