Python数据分析案例52——基于SSA-LSTM的风速预测(麻雀优化)

news2024/11/15 6:47:45

案例背景

又要开始更新时间序列水论文的系列的方法了,前面基于各种不同神经网络层,还有注意力机制做了一些缝合模型。
其实论文里面用的多的可能是优化算法和模态分解,这两个我还没出专门的例子,这几天正好出一个优化算法的例子来做一个时间序列模型的缝合版。
想看更多的发论文用的模型可以参考我数据分析案例之前的文章,或者关注我后面的文章。

其实优化算法在python里面的生态不如MATLAB,现有的包很少,所以都是现写的。我自己也有优化算法专栏,以后有机会都写上去。本次的Python版的麻雀算法就是手写的,网上基本没有。

本次就简单点,使用优化算法里面表现较好的麻雀优化算法,优化算法我也做过一些测试,虽然都是各有优势,但是从通用性和整体表现来看,麻雀优化算法表现是较好的,那些什么混沌麻雀,自适应麻雀也差不多,可能在特殊的情况下表现会好一些。什么,你问问为什么不用粒子群,退火,遗传这种算法?emmmm,你自己去找些函数试试就知道他们比麻雀算法差多少了。。。


数据介绍

本次数据集有两个csv,一个桥面风速,一个气象站风速。

一般来说,桥面风速是好测量的,气象站的风速是被认为是真实的风速,所以我们当前的用气象站的风速作为y,之前的桥面风速和气象站风速作为X。

当然,需要本次案例演示数据和全部代码文件的同学还是可以参考:风速预测。


代码实现

导入包,深度学习的包有点多、

import os
import math
import time
import datetime
import random as rn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams ['font.sans-serif'] ='SimHei'               #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号
 
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler,StandardScaler
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error,r2_score
 
import tensorflow as tf
import keras
from keras.layers import Layer
import keras.backend as K
from keras.models import Model, Sequential
from keras.layers import GRU, Dense,Conv1D, MaxPooling1D,GlobalMaxPooling1D,Embedding,Dropout,Flatten,SimpleRNN,LSTM
from keras.callbacks import EarlyStopping
#from tensorflow.keras import regularizers
#from keras.utils.np_utils import to_categorical
from tensorflow.keras  import optimizers

读取数据,展示前五行

data0=pd.concat([pd.read_excel('bridge2.xlsx').set_index('时间'),
                 pd.read_excel('weather_station.xlsx').set_index('时间')],axis=1).sort_index().fillna(0)
data0.head()

一行代码读取两个文件,并且合并,代码风格还是简洁优雅的。

注意想换成自己的数据集的话,要预测的y放在最后一列。

构建训练集和测试集

时间序列的预测一套滑动窗口,构建的函数如下

def build_sequences(text, window_size=24):
    #text:list of capacity
    x, y = [],[]
    for i in range(len(text) - window_size):
        sequence = text[i:i+window_size]
        target = text[i+window_size]
        x.append(sequence)
        y.append(target)
    return np.array(x), np.array(y)
 
def get_traintest(data,train_ratio=0.8,window_size=24):
    train_size=int(len(data)*train_ratio)
    train=data[:train_size]
    test=data[train_size-window_size:]
    X_train,y_train=build_sequences(train,window_size=window_size)
    X_test,y_test=build_sequences(test,window_size=window_size)
    return X_train,y_train[:,-1],X_test,y_test[:,-1]

对x和y进行标准化

data=data0.to_numpy()
scaler = MinMaxScaler() 
scaler = scaler.fit(data[:,:-1])
X=scaler.transform(data[:,:-1])   
 
y_scaler = MinMaxScaler() 
y_scaler = y_scaler.fit(data[:,-1].reshape(-1,1))
y=y_scaler.transform(data[:,-1].reshape(-1,1))

划分训练集和测试集

train_ratio=0.8     #训练集比例   
window_size=64      #滑动窗口大小,即循环神经网络的时间步长
X_train,y_train,X_test,y_test=get_traintest(np.c_[X,y],window_size=window_size,train_ratio=train_ratio)
print(X_train.shape,y_train.shape,X_test.shape,y_test.shape)

数据可视化

y_test = y_scaler.inverse_transform(y_test.reshape(-1,1))
test_size=int(len(data)*(1-train_ratio))
plt.figure(figsize=(10,5),dpi=256)
plt.plot(data0.index[:-test_size],data0.iloc[:,-1].iloc[:-test_size],label='Train',color='#FA9905')
plt.plot(data0.index[-test_size:],data0.iloc[:,-1].iloc[-(test_size):],label='Test',color='#FB8498',linestyle='dashed')
plt.legend()
plt.ylabel('Predict Series',fontsize=16)
plt.xlabel('Time',fontsize=16)
plt.show()

训练函数的准备

下面继续自定义函数,评价指标

def set_my_seed():
    os.environ['PYTHONHASHSEED'] = '0'
    np.random.seed(1)
    rn.seed(12345)
    tf.random.set_seed(123)
    
def evaluation(y_test, y_predict):
    mae = mean_absolute_error(y_test, y_predict)
    mse = mean_squared_error(y_test, y_predict)
    rmse = np.sqrt(mean_squared_error(y_test, y_predict))
    mape=(abs(y_predict -y_test)/ y_test).mean()
    #r_2=r2_score(y_test, y_predict)
    return mse, rmse, mae, mape #r_2

我们使用回归问题常用的mse, rmse, mae, mape作为预测效果的评价指标。

自定义注意力机制的类

class AttentionLayer(Layer):    #自定义注意力层
    def __init__(self, **kwargs):
        super(AttentionLayer, self).__init__(**kwargs)

    def build(self, input_shape):
        self.W = self.add_weight(name='attention_weight',
                                 shape=(input_shape[-1], input_shape[-1]),
                                 initializer='random_normal',
                                 trainable=True)
        self.b = self.add_weight(name='attention_bias',
                                 shape=(input_shape[1], input_shape[-1]),
                                 initializer='zeros',
                                 trainable=True)
        super(AttentionLayer, self).build(input_shape)

    def call(self, x):
        # Applying a simpler attention mechanism
        e = K.tanh(K.dot(x, self.W) + self.b)
        a = K.softmax(e, axis=1)
        output = x * a
        return output

    def compute_output_shape(self, input_shape):
        return input_shape

自定义模型的构建

def build_model(X_train,mode='LSTM',hidden_dim=[32,16]):
    set_my_seed()
    model = Sequential()
    if mode=='MLP':
        model.add(Dense(hidden_dim[0],activation='relu',input_shape=(X_train.shape[-2],X_train.shape[-1])))
        model.add(Flatten())
        model.add(Dense(hidden_dim[1],activation='relu'))
    elif mode=='LSTM':
        # LSTM
        model.add(LSTM(hidden_dim[0],return_sequences=True, input_shape=(X_train.shape[-2],X_train.shape[-1])))#
        model.add(LSTM(hidden_dim[1]))
        #model.add(Flatten())
        #model.add(Dense(hidden_dim[1], activation='relu'))
    elif mode=='GRU':
        #GRU
        model.add(GRU(hidden_dim[0],return_sequences=True, input_shape=(X_train.shape[-2],X_train.shape[-1])))
        model.add(GRU(hidden_dim[1]))
    elif mode == 'Attention-LSTM':
        model.add(LSTM(hidden_dim[0], return_sequences=True, input_shape=(X_train.shape[-2], X_train.shape[-1])))
        model.add(AttentionLayer())        
        #model.add(LSTM(hidden_dim[1]))#, return_sequences=False
        model.add(Flatten())
        model.add(Dense(hidden_dim[1], activation='relu'))
        #model.add(Dense(4, activation='relu'))
    elif mode=='SSA-LSTM':
        # LSTM
        model.add(LSTM(hidden_dim[0],input_shape=(X_train.shape[-2],X_train.shape[-1])))#return_sequences=True, 
        model.add(Dense(hidden_dim[1], activation='relu'))

    model.add(Dense(1))
    model.compile(optimizer='Adam', loss='mse',metrics=[tf.keras.metrics.RootMeanSquaredError(),"mape","mae"])
    return model

自定义画损失图函数和预测对比函数

def plot_loss(hist,imfname=''):
    plt.subplots(1,4,figsize=(16,2))
    for i,key in enumerate(hist.history.keys()):
        n=int(str('14')+str(i+1))
        plt.subplot(n)
        plt.plot(hist.history[key], 'k', label=f'Training {key}')
        plt.title(f'{imfname} Training {key}')
        plt.xlabel('Epochs')
        plt.ylabel(key)
        plt.legend()
    plt.tight_layout()
    plt.show()
def plot_fit(y_test, y_pred):
    plt.figure(figsize=(4,2))
    plt.plot(y_test, color="red", label="actual")
    plt.plot(y_pred, color="blue", label="predict")
    plt.title(f"拟合值和真实值对比")
    plt.xlabel("Time")
    plt.ylabel('power')
    plt.legend()
    plt.show()

可能有的小伙伴觉得看不懂了,没关系,我都是高度的封装,不需要知道每个函数里面的细节,大概知道他们是做什么的就行。因为下面要把他们全部打包为训练函数,改一下参数就可以使用不同的模型,很方便,

df_eval_all=pd.DataFrame(columns=['MSE','RMSE','MAE','MAPE'])
df_preds_all=pd.DataFrame()
def train_fuc(mode='LSTM',batch_size=64,epochs=30,hidden_dim=[32,16],verbose=0,show_loss=True,show_fit=True):
    #构建模型
    s = time.time()
    set_my_seed()
    model=build_model(X_train=X_train,mode=mode,hidden_dim=hidden_dim)
    earlystop = EarlyStopping(monitor='loss', min_delta=0, patience=5)
    hist=model.fit(X_train, y_train,batch_size=batch_size,epochs=epochs,callbacks=[earlystop],verbose=verbose)
    if show_loss:
        plot_loss(hist)
            
    #预测
    y_pred = model.predict(X_test)
    y_pred = y_scaler.inverse_transform(y_pred)
    #print(f'真实y的形状:{y_test.shape},预测y的形状:{y_pred.shape}')
    if show_fit:
        plot_fit(y_test, y_pred)
    e=time.time()
    print(f"运行时间为{round(e-s,3)}")
    df_preds_all[mode]=y_pred.reshape(-1,)
        
    s=list(evaluation(y_test, y_pred))
    df_eval_all.loc[f'{mode}',:]=s
    s=[round(i,3) for i in s]
    print(f'{mode}的预测效果为:MSE:{s[0]},RMSE:{s[1]},MAE:{s[2]},MAPE:{s[3]}')
    print("=======================================运行结束==========================================")
    return s[0]

所有的函数都准备完了,下面初始化参数,开始准备训练模型

window_size=64
batch_size=64
epochs=30
hidden_dim=[32,16]

verbose=0
show_fit=True
show_loss=True
mode='LSTM'  #MLP,GRU

MLP模型训练

train_fuc(mode='MLP',batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim,verbose=1)

可以看到这个训练函数运行完后,可以清晰的看到每个训练轮的损失,损失的变化图,预测的效果对比图,还有评价指标的计算结果。

换模型也很便捷,只需要该mode这一个参数就行。

GRU模型训练

修改一下mode就行,其他参数你可以改也可以不改

train_fuc(mode='GRU',batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim,verbose=1)

LSTM训练

train_fuc(mode='LSTM',batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim,verbose=1)

Attention-LSTM模型的训练

train_fuc(mode='Attention-LSTM',batch_size=batch_size,epochs=epochs,hidden_dim=hidden_dim,verbose=1)

好像加了注意力机制的效果只变好了一点点。


麻雀搜索优化算法(SSA)

这里直接写上SSA的源代码,python版本的网上几乎是没有的

import numpy as np
import random
import copy
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

''' 种群初始化函数 '''
def initial(pop, dim, ub, lb):
    X = np.zeros([pop, dim])
    for i in range(pop):
        for j in range(dim):
            X[i, j] = random.random()*(ub[j] - lb[j]) + lb[j]
    
    return X,lb,ub
            
'''边界检查函数'''
def BorderCheck(X,ub,lb,pop,dim):
    for i in range(pop):
        for j in range(dim):
            if X[i,j]>ub[j]:
                X[i,j] = ub[j]
            elif X[i,j]<lb[j]:
                X[i,j] = lb[j]
    return X
    
    
'''计算适应度函数'''
def CaculateFitness(X,fun):
    pop = X.shape[0]
    fitness = np.zeros([pop, 1])
    for i in range(pop):
        fitness[i] = fun(X[i, :])
    return fitness

'''适应度排序'''
def SortFitness(Fit):
    fitness = np.sort(Fit, axis=0)
    index = np.argsort(Fit, axis=0)
    return fitness,index


'''根据适应度对位置进行排序'''
def SortPosition(X,index):
    Xnew = np.zeros(X.shape)
    for i in range(X.shape[0]):
        Xnew[i,:] = X[index[i],:]
    return Xnew

'''麻雀发现者更新'''
def PDUpdate(X,PDNumber,ST,Max_iter,dim):
    X_new  = copy.copy(X)
    R2 = random.random()
    for j in range(PDNumber):
        if R2<ST:
            X_new[j,:] = X[j,:]*np.exp(-j/(np.random.random()*Max_iter))
        else:
            X_new[j,:] = X[j,:] + np.random.randn()*np.ones([1,dim])
    return X_new
        
'''麻雀加入者更新'''            
def JDUpdate(X,PDNumber,pop,dim):
    X_new = copy.copy(X)
    for j in range(PDNumber+1,pop):
        if j>(pop - PDNumber)/2 + PDNumber:
            X_new[j,:]= np.random.randn()*np.exp((X[-1,:] - X[j,:])/j**2)
        else:
             #产生-1,1的随机数
            A = np.ones([dim,1])
            for a in range(dim):
                if(random.random()>0.5):
                     A[a]=-1       
        AA = np.dot(A,np.linalg.inv(np.dot(A.T,A)))
        X_new[j,:]= X[1,:] + np.abs(X[j,:] - X[1,:])*AA.T
           
    return X_new                    
            
'''危险更新'''   
def SDUpdate(X,pop,SDNumber,fitness,BestF):
    X_new = copy.copy(X)
    Temp = range(pop)
    RandIndex = random.sample(Temp, pop)
    SDchooseIndex = RandIndex[0:SDNumber]
    for j in range(SDNumber):
        if fitness[SDchooseIndex[j]]>BestF:
            X_new[SDchooseIndex[j],:] = X[0,:] + np.random.randn()*np.abs(X[SDchooseIndex[j],:] - X[1,:])
        elif fitness[SDchooseIndex[j]] == BestF:
            K = 2*random.random() - 1
            X_new[SDchooseIndex[j],:] = X[SDchooseIndex[j],:] + K*(np.abs( X[SDchooseIndex[j],:] - X[-1,:])/(fitness[SDchooseIndex[j]] - fitness[-1] + 10E-8))
    return X_new
              
    

'''麻雀搜索算法'''
def SSA(pop,dim,lb,ub,Max_iter,fun):
    ST = 0.6 #预警值
    PD = 0.7 #发现者的比列,剩下的是加入者
    SD = 0.2 #意识到有危险麻雀的比重
    PDNumber = int(pop*PD) #发现者数量
    SDNumber = int(pop*SD) #意识到有危险麻雀数量
    X,lb,ub = initial(pop, dim, ub, lb) #初始化种群
    fitness = CaculateFitness(X,fun) #计算适应度值
    fitness,sortIndex = SortFitness(fitness) #对适应度值排序
    X = SortPosition(X,sortIndex) #种群排序
    GbestScore = copy.copy(fitness[0])
    GbestPositon = np.zeros([1,dim])
    GbestPositon[0,:] = copy.copy(X[0,:])
    Curve = np.zeros([Max_iter,1])
    for i in range(Max_iter):
        
        BestF = fitness[0]
        
        X = PDUpdate(X,PDNumber,ST,Max_iter,dim)#发现者更新
        
        X = JDUpdate(X,PDNumber,pop,dim) #加入者更新
        
        X = SDUpdate(X,pop,SDNumber,fitness,BestF) #危险更新
        
        X = BorderCheck(X,ub,lb,pop,dim) #边界检测
        
        fitness = CaculateFitness(X,fun) #计算适应度值
        fitness,sortIndex = SortFitness(fitness) #对适应度值排序
        X = SortPosition(X,sortIndex) #种群排序
        if(fitness[0]<=GbestScore): #更新全局最优
            GbestScore = copy.copy(fitness[0])
            GbestPositon[0,:] = copy.copy(X[0,:])
        Curve[i] = GbestScore
    
    return GbestScore,GbestPositon,Curve

这个模块可以写外面,从工程的角度来看放在一个py里面导入是最合理的。但是我们这是案例,考虑到简洁和易学性,所以我们都放在一个文件里面了。

优化算法定义完成后,定义目标函数

#import SSA
def fobj(X):
    s=train_fuc(mode='SSA-LSTM',batch_size=int(X[0]),epochs=int(X[1]),hidden_dim=[int(X[2]),int(X[3])],verbose=0,show_loss=False,show_fit=False)
    return s

 进行优化算法的训练:

GbestScore1,GbestPositon1,Curve1 = SSA(pop=2,dim=4,lb=[8,20,30,12],ub=[40,40,80,42],Max_iter=2,fun=fobj) 

 我这里由于时间问题,我种群数量pop只用了2个,一般是30个,迭代次数一般是100-200次,我就改了2次,因为新电脑的TensorFlow不支持GPU加速,算的太慢了.......就没去搜索那么多次,就填了个较小的数字做演示好了。

打印最优的参数解和最优的适应度值

print('最优适应度值:',GbestScore1)
GbestPositon1=[int(i)for i in GbestPositon1[0]]
print('最优解为:',GbestPositon1)

 带入最优解:

train_fuc(mode='SSA-LSTM',batch_size=GbestPositon1[0],epochs=GbestPositon1[1],
          hidden_dim=[GbestPositon1[2],GbestPositon1[3]],show_loss=True,show_fit=True,verbose=1)

虽然没搜索几次,但是这个效果还是不错的。


查看评价指标对比

好了,所有的模型都训练和预测了,评价指标都算完了,我们当然想对比了,我前面写训练函数都已经留了一手,预测的结果和效果都存下来 了,和我一样一步步运行下来的可以直接查看预测效果。

df_eval_all

还是不直观,画图吧

bar_width = 0.4
colors=['c', 'orange','g', 'tomato','b', 'm', 'y', 'lime', 'k','orange','pink','grey','tan']
fig, ax = plt.subplots(2,2,figsize=(8,6),dpi=128)
for i,col in enumerate(df_eval_all.columns):
    n=int(str('22')+str(i+1))
    plt.subplot(n)
    df_col=df_eval_all[col]
    m =np.arange(len(df_col))
    plt.bar(x=m,height=df_col.to_numpy(),width=bar_width,color=colors)#
    
    #plt.xlabel('Methods',fontsize=12)
    names=df_col.index
    plt.xticks(range(len(df_col)),names,fontsize=10)
    plt.xticks(rotation=40)
    plt.ylabel(col,fontsize=14)
    
plt.tight_layout() 
#plt.savefig('柱状图.jpg',dpi=512)
plt.show()

可以清楚地看见,SSA-lstm的效果最好,其次是GRU,然后是LSTM和attention-lstm。

所以说优化算法还是有效的,

继续画图他们的预测效果对比图:

plt.figure(figsize=(10,5),dpi=256)
for i,col in enumerate(df_preds_all[['MLP','GRU','LSTM','Attention-LSTM','SSA-LSTM']].columns):
    plt.plot(data0.index[-test_size-1:],df_preds_all[col],label=col) # ,color=colors[i]

plt.plot(data0.index[-test_size-1:],y_test.reshape(-1,),label='Actual',color='k',linestyle=':',lw=2)
plt.legend()
plt.ylabel('wind',fontsize=16)
plt.xlabel('Date',fontsize=16)
#plt.savefig('点估计线对比.jpg',dpi=256)
plt.show()

也可以从这个图清楚的看到预测效果对比


总结

在这个案例里面的,SSA-LSTM效果好于GRU好于LSTM和attention-LSTM,说明优化算的效果是可以的,当然同学们还有时间可以用SSA-GRU,SSA-attention-LSTM都去试试,,看谁的效果好。模型修改就该buildmodel这个函数,很简单的,搭积木,要什么层就写什么层的名字就行。
画个数据也是很容易实验的。

这是优化算法+神经网络的方法啦, 修改不同的优化算法就用自己自定义的算法替换就行,我后面的优化算法的专栏可能也会更新的,最近也有粉丝问问能不能出一个VMD或者CEEMDAN这些模态分解的对比,有时间我都写出来,可以关注我后面的文章。


创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制类似的代码可私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1923907.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

RocketMQ~架构了解

简介 RocketMQ 具有高性能、高可靠、高实时、分布式 的特点。它是一个采用 Java 语言开发的分布式的消息系统&#xff0c;由阿里巴巴团队开发&#xff0c;在 2016 年底贡献给 Apache&#xff0c;成为了 Apache 的一个顶级项目。 在阿里内部&#xff0c;RocketMQ 很好地服务了集…

优化Cocos Creator 包体体积

优化Cocos Creator 包体体积 引言一、优化图片文件体积&#xff1a;二、优化声音文件体积&#xff1a;三、优化引擎代码体积&#xff1a;四、 优化字体字库文件大小&#xff1a; 引言 优化Cocos Creator项目的包体体积是一个常见且重要的任务&#xff0c;尤其是在移动设备和网…

【高中数学/幂函数】比较a=2^0.3,b=3^0.2,c=7^0.1的大小

【问题】 比较a2^0.3,b3^0.2,c7^0.1的大小 【解答】 a2^0.32^3/10(2^3)^1/108^1/10 b3^0.23^2/10(3^2)^1/109^1/10 c7^0.17^1/10 由于yx^1/10在x正半轴是增函数&#xff0c;底数大的得数就大。 因为9>8>7,所以b>a>c 【图像】 在图像上绘出曲线yx^1/10&…

红日靶场----(三)1.漏洞利用

上期已经信息收集阶段已经完成&#xff0c;接下来是漏洞利用。 靶场思路 通过信息收集得到两个吧靶场的思路 1、http://192.168.195.33/phpmyadmin/&#xff08;数据库的管理界面&#xff09; root/root 2、http://192.168.195.33/yxcms/index.php?radmin/index/login&am…

杆塔倾斜在线监测装置

概述 我国约960万平方公里已经基本实现电网和基站通讯全覆盖&#xff0c;但我国地貌复杂多样&#xff0c;大部分杆塔需要安装在野外&#xff0c;在安装时并不能保证地基的结实可靠&#xff0c;一不小心就可能导致杆塔的倾斜倒塌。 在通信铁塔倾斜现象发生发展的初期&#xff0…

HarmonyOS(43) @BuilderParam标签使用指南

BuilderParam BuilderParam使用举例定义模板定义具体实现BuilderParam初始化 demo源码参考资料 BuilderParam 该标签有的作用有点类似于设计模式中的模板模式&#xff0c;类似于指定一个UI占位符&#xff0c;具体的实现交给具体的Builder&#xff0c;顾名思义&#xff0c;可以…

面试内容集合

用例设计方法 &#xff08;一&#xff09;等价类划分  常见的软件测试面试题划分等价类: 等价类是指某个输入域的子集合.在该子集合中,各个输入数据对于揭露程序中的错误都是等效的.并合理地假定:测试某等价类的代表值就等于对这一类其它值的测试.因此,可以把全部输入数据合理…

腾讯云如何设置二级域名?

什么是二级域名&#xff1f; 例如我已申请的域名为&#xff1a; test.com //顶级域名 现在我开发的应用要部署到二级域名&#xff1a; blog.test.com 1、打开腾讯云控制台的我的域名&#xff0c;然后点击解析 2、在我的解析页面点击添加记录&#xff0c;然后需注意红色方框处…

js 请求blob:https:// 图片

方式1 def get_file_content_chrome(driver, uri):result driver.execute_async_script("""var uri arguments[0];var callback arguments[1];var toBase64 function(buffer){for(var r,nnew Uint8Array(buffer),tn.length,anew Uint8Array(4*Math.ceil(t/…

[WUSTCTF2020]funnyre

【【反调试】花指令patch与原理分析】https://www.bilibili.com/video/BV1mK411A75G?vd_source7ad69e0c2be65c96d9584e19b0202113 B站这个视频和这道题的花指令一样的 这个call百分之一万是辣鸡 重编译u他 经典辣鸡花指令 nop掉 下面一共有四处,一样的操作 然后回到main函…

奥利奥广告策略解析「扭一扭、舔一舔、泡一泡」广告为何深入人心?

作为一个多年的广告人&#xff0c;我认为奥利奥的「扭一扭、舔一舔、泡一泡」广告策略非常巧妙。今天可以从专业的角度来分析分析一下&#xff0c;大概应该有三大原因吧。 品牌识别度与记忆点&#xff1a; “扭一扭、舔一舔、泡一泡”这句广告语简洁易记&#xff0c;富有节奏…

如何30分钟下载完368G的Android系统源码?

如何30分钟下载完368G的Android系统源码&#xff1f; Android系统开发的一个痛点问题就是Android系统源码庞大&#xff0c;小则100G,大则&#xff0c;三四百G。如标题所言&#xff0c;本文介绍通过局域网高速网速下载源码的方法。 制作源码mirror 从源码git服务器A&#xff0c…

AGI 之 【Hugging Face】 的【问答系统】的 [评估并改进问答Pipeline] / [ 生成式问答 ] 的简单整理

AGI 之 【Hugging Face】 的【问答系统】的 [评估并改进问答Pipeline] / [ 生成式问答 ] 的简单整理 目录 AGI 之 【Hugging Face】 的【问答系统】的 [评估并改进问答Pipeline] / [ 生成式问答 ] 的简单整理 一、简单介绍 二、构建问答系统 三、评估并改进问答pipeline 1…

总结单例模式的写法

一、单例模式的概念 1.1 单例模式的概念 单例模式&#xff08;Singleton Pattern&#xff09;是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。就是当前进程确保一个类全局只有一个实例。 1.2 单例模式的优…

【postgresql】时间函数和操作符

日期/时间操作符 加减操作符&#xff1a; 和 - 可以用于日期、时间、时间戳和时间间隔的加减操作。 SELECT 2024-01-01::date INTERVAL 1 day as "date"; ; -- 结果&#xff1a;2024-01-02SELECT 2024-01-01 12:00:00::timestamp - INTERVAL 2 hours as "…

泽众一站式性能测试平台P-One监控指标的意义

在当今数字化和信息化高度发展的时代&#xff0c;企业把保障系统稳定运行、优化业务流程和提升用户体验摆在首要位置。然而&#xff0c;在现如今复杂的分布式系统中&#xff0c;各个组件和服务之间的交互频繁且紧密&#xff0c;当系统出现性能瓶颈时&#xff0c;传统的监测手段…

Flutter 初识:导航控件

Flutter导航控件小结 路由与导航Navigator核心方法属性示例基本导航示例替换当前页面并推入新页面使用命名路由动态生成路由额外的导航功能 完整示例代码 MaterialPageRoute属性示例 CupertinoPageRoute属性示例 应用栏与底部导航AppBar属性解析示例 BottomNavigationBar属性解…

gorm只查询某一些字段字段的方法Select, 和只查询某一字段方法 Pluck

gorm中默认是查询所有字段的&#xff0c; 如果我们只需要获取某些字段的值&#xff0c;可以通过使用 Select方法来指定要查询的字段来实现&#xff0c; 也可以通过定义一个需要字段的结构体来实现&#xff1b; 而如果我们只需要查询某一个字段的值就可以使用 Pluck方法来获取(这…

【Python】一文向您详细介绍 `isinstance()` 的原理、作用和使用场景

【Python】一文向您详细介绍 isinstance() 的原理、作用和使用场景 下滑即可查看博客内容 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地&#xff01;&#x1f387; &#x1f393; 博主简介&#xff1a;985…

【精品资料】数字乡村一体化解决方案(45页PPT)

引言&#xff1a;数字乡村一体化解决方案是响应国家乡村振兴战略&#xff0c;依托现代信息技术和数字经济理念&#xff0c;对乡村进行全面改造和升级的综合框架。该方案旨在通过数字化手段&#xff0c;推动乡村产业、治理、文化、教育、医疗等领域的协同发展&#xff0c;实现乡…