YOLOv10改进 | Conv篇 | RCS-OSA替换C2f实现暴力涨点(减少通道的空间对象注意力机制)

news2024/9/26 5:23:53

 一、本文介绍

 本文给大家带来的改进机制是RCS-YOLO提出的RCS-OSA模块,其全称是"Reduced Channel Spatial Object Attention",意即"减少通道的空间对象注意力"。这个模块的主要功能是通过减少特征图的通道数量,同时关注空间维度上的重要特征,来提高模型的处理效率和检测精度。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.6左右)同时本文对RCS-OSA模块的框架原理进行了详细的分析,不光让大家会添加到自己的模型在写论文的时候也能够有一定的参照,最后本文会手把手教你添加RCS-OSA模块到网络结构中。

 专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、RCS-OSA模块原理

2.1 RCS-OSA的基本原理

2.2 RCS

2.3 RCS模块

2.4 OSA

2.5 特征级联

三、RCS-OSA核心代码

四、手把手教你添加RCS-OSA模块

4.1 RCS-OSA添加步骤

4.1.1 步骤一

4.1.2 步骤二

4.1.3 步骤三

4.2 RCS-OSA的yaml文件和训练截图

4.2.1 RCS-OSA的yaml版本一(推荐)

4.2.2 RCS-OSA的yaml版本二

4.2.3 训练代码

4.2.4 RCS-OSA的训练过程截图 

五、本文总结


二、RCS-OSA模块原理

论文地址:官方论文地址

代码地址:官方代码地址


2.1 RCS-OSA的基本原理

RCSOSA(RCS-One-Shot Aggregation)RCS-YOLO中提出的一种结构,我们可以将主要原理概括如下:

1. RCS(Reparameterized Convolution based on channel Shuffle): 结合了通道混洗,通过重参数化卷积来增强网络的特征提取能力。

2. RCS模块: 在训练阶段,利用多分支结构学习丰富的特征表示;在推理阶段,通过结构化重参数化简化为单一分支,减少内存消耗。

3. OSA(One-Shot Aggregation): 一次性聚合多个特征级联,减少网络计算负担,提高计算效率。

4. 特征级联: RCS-OSA模块通过堆叠RCS,确保特征的复用并加强不同层之间的信息流动。


2.2 RCS

RCS(基于通道Shuffle的重参数化卷积)是RCS-YOLO的核心组成部分,旨在训练阶段通过多分支结构学习丰富的特征信息,并在推理阶段通过简化为单分支结构来减少内存消耗,实现快速推理。此外,RCS利用通道分割和通道Shuffle操作来降低计算复杂性,同时保持通道间的信息交换,这样在推理阶段相比普通的3×3卷积可以减少一半的计算复杂度。通过结构重参数化,RCS能够在训练阶段从输入特征中学习深层表示,并在推理阶段实现快速推理,同时减少内存消耗。


2.3 RCS模块

RCS(基于通道Shuffle的重参数化卷积)模块中,结构在训练阶段使用多个分支,包括1x1和3x3的卷积,以及一个直接的连接(Identity),用于学习丰富的特征表示。在推理阶段,结构被重参数化成一个单一的3x3卷积,以减少计算复杂性和内存消耗,同时保持训练阶段学到的特征表达能力。这与RCS的设计理念紧密相连,即在不牺牲性能的情况下提高计算效率。

上图为大家展示了RCS的结构,分为训练阶段(a部分)推理阶段(b部分)。在训练阶段,输入通过通道分割,一部分输入经过RepVGG块,另一部分保持不变。然后通过1x1卷积和3x3卷积处理RepVGG块的输出,与另一部分输入进行通道Shuffle和连接。在推理阶段,原来的多分支结构被简化为一个单一的3x3 RepConv块。这种设计允许在训练时学习复杂特征,在推理时减少计算复杂度。黑色边框的矩形代表特定的模块操作,渐变色的矩形代表张量的特定特征,矩形的宽度代表张量的通道数。 


2.4 OSA

OSA(One-Shot Aggregation)是一个关键的模块,旨在提高网络在处理密集连接时的效率。OSA模块通过表示具有多个感受野的多样化特征,并在最后的特征映射中仅聚合一次所有特征,从而克服了DenseNet中密集连接的低效率问题。

OSA模块的使用有两个主要目的:

1. 提高特征表示的多样性:OSA通过聚合具有不同感受野的特征来增加网络对于不同尺度的敏感性,这有助于提升模型对不同大小目标的检测能力。

2. 提高效率:通过在网络的最后一部分只进行一次特征聚合,OSA减少了重复的特征计算和存储需求,从而提高了网络的计算和能源效率。

在RCS-YOLO中,OSA模块被进一步与RCS(基于通道Shuffle的重参数化卷积)相结合,形成RCS-OSA模块。这种结合不仅保持了低成本的内存消耗,而且还实现了语义信息的有效提取,对于构建轻量级和大规模的对象检测器尤为重要。

下面我将为大家展示RCS-OSA(One-Shot Aggregation of RCS)的结构。

在RCS-OSA模块中,输入被分为两部分,一部分直接通过,另一部分通过堆叠的RCS模块进行处理。处理后的特征和直接通过的特征在通道混洗(Channel Shuffle)后合并。这种结构设计用于增强模型的特征提取和利用效率,是RCS-YOLO架构中的一个关键组成部分旨在通过一次性聚合来提高模型处理特征的能力,同时保持计算效率。


2.5 特征级联

特征级联(feature cascade)是一种技术,通过在网络的一次性聚合(one-shot aggregate)路径上维持有限数量的特征级联来实现的。在RCS-YOLO中,特别是在RCS-OSA(RCS-Based One-Shot Aggregation)模块中,只保留了三个特征级联。

特征级联的目的是为了减轻网络计算负担并降低内存占用。这种方法可以有效地聚合不同层次的特征,提高模型的语义信息提取能力,同时避免了过度复杂化网络结构所带来的低效率和高资源消耗。

下面为大家提供的图像展示的是RCS-YOLO的整体架构,其中包括RCS-OSA模块。RCS-OSA在模型中用于堆叠RCS模块,以确保特征的复用并加强不同层之间的信息流动。图中显示的多层RCS-OSA模块的排列和组合反映了它们如何一起工作以优化特征传递和提高检测性能。

总结:RCS-YOLO主要由RCS-OSA(蓝色模块)和RepVGG(橙色模块)构成。这里的n代表堆叠RCS模块的数量。n_cls代表检测到的对象中的类别数量。图中的IDetect是从YOLOv7中借鉴过来的,表示使用二维卷积神经网络的检测层。这个架构通过堆叠的RCS模块和RepVGG模块,以及两种类型的检测层,实现了对象检测的任务。 


三、RCS-OSA核心代码

在这里说一下这个原文是RCS-YOLO我们只是用其中的RCS-OSA模块来替换我们YOLOv8中的C2f模块,但是在RCS-YOLO中还有一个RepVGG模块(大家在下面的代码中可以看到),这个模块可以替换Conv,但是如果都替换的话我觉得那就是RCS-YOLO了没啥区别了,所以我下面的改进和这篇文章只用了RCS-OSA模块来替换C2f,如果你对RCS-YOLO感兴趣的话,我后面也会提高RCS-YOLO的yaml文件供大家参考。

import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import math

# build RepVGG block
# -----------------------------
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=False))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))

    return result

class SEBlock(nn.Module):
    def __init__(self, input_channels):
        super(SEBlock, self).__init__()
        internal_neurons = input_channels // 8
        self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,
                              bias=True)
        self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,
                            bias=True)
        self.input_channels = input_channels

    def forward(self, inputs):
        x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))
        x = self.down(x)
        x = F.relu(x)
        x = self.up(x)
        x = torch.sigmoid(x)
        x = x.view(-1, self.input_channels, 1, 1)
        return inputs * x

class RepVGG(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
        super(RepVGG, self).__init__()
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels

        padding_11 = padding - kernel_size // 2

        self.nonlinearity = nn.SiLU()
        # self.nonlinearity = nn.ReLU()

        if use_se:
            self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)
        else:
            self.se = nn.Identity()

        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding, dilation=dilation, groups=groups, bias=True,
                                         padding_mode=padding_mode)

        else:
            self.rbr_identity = nn.BatchNorm2d(
                num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                     stride=stride, padding=padding, groups=groups)
            self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
                                   padding=padding_11, groups=groups)
            # print('RepVGG Block, identity = ', self.rbr_identity)

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def forward(self, inputs):
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))

    def fusevggforward(self, x):
        return self.nonlinearity(self.rbr_dense(x))

# RepVGG block end
# -----------------------------

class SR(nn.Module):
    # Shuffle RepVGG
    def __init__(self, c1, c2):
        super().__init__()
        c1_ = int(c1 // 2)
        c2_ = int(c2 // 2)
        self.repconv = RepVGG(c1_, c2_)

    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        out = torch.cat((x1, self.repconv(x2)), dim=1)
        out = self.channel_shuffle(out, 2)
        return out

    def channel_shuffle(self, x, groups):
        batchsize, num_channels, height, width = x.data.size()
        channels_per_group = num_channels // groups
        x = x.view(batchsize, groups, channels_per_group, height, width)
        x = torch.transpose(x, 1, 2).contiguous()
        x = x.view(batchsize, -1, height, width)
        return x


def make_divisible(x, divisor):
    # Returns nearest x divisible by divisor
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor

class RCSOSA(nn.Module):
    # VoVNet with Res Shuffle RepVGG
    def __init__(self, c1, c2, n=1, se=False, e=0.5, stackrep=True):
        super().__init__()
        n_ = n // 2
        c_ = make_divisible(int(c1 * e), 8)
        # self.conv1 = Conv(c1, c_)
        self.conv1 = RepVGG(c1, c_)
        self.conv3 = RepVGG(int(c_ * 3), c2)
        self.sr1 = nn.Sequential(*[SR(c_, c_) for _ in range(n_)])
        self.sr2 = nn.Sequential(*[SR(c_, c_) for _ in range(n_)])

        self.se = None
        if se:
            self.se = SEBlock(c2)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.sr1(x1)
        x3 = self.sr2(x2)
        x = torch.cat((x1, x2, x3), 1)
        return self.conv3(x) if self.se is None else self.se(self.conv3(x))

if __name__ == '__main__':
    m = RCSOSA(256, 256)
    im = torch.randn(2, 256, 13, 13)
    y = m(im)
    print(y.shape)


四、手把手教你添加RCS-OSA模块

4.1 RCS-OSA添加步骤

4.1.1 步骤一

首先我们找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个py文件,名字为RCSOSA即可,然后将RCS-OSA的核心代码复制进去。

4.1.2 步骤二

之后我们找到'ultralytics/nn/tasks.py'文件,在其中注册我们的RCS-OSA模块。

首先我们需要在文件的开头导入我们的RCS-OSA模块,如下图所示->

4.1.3 步骤三

我们找到parse_model这个方法,可以用搜索也可以自己手动找,大概在六百多行吧。 我们找到如下的地方,然后将RCS-OSA添加进去即可

到此我们就注册成功了,可以修改yaml文件中输入RCSOSA使用这个模块了。


4.2 RCS-OSA的yaml文件和训练截图

下面推荐几个版本的yaml文件给大家,大家可以复制进行训练,但是组合用很多具体那种最有效果都不一定,针对不同的数据集效果也不一样,我不可每一种都做实验,所以我下面推荐了几种我自己认为可能有效果的配合方式,你也可以自己进行组合。


4.2.1 RCS-OSA的yaml版本一(推荐)

此版本训练信息:YOLOv10n-RCSOSA summary: 469 layers, 5883858 parameters, 5883842 gradients, 20.7 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, RCS-OSA, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, RCS-OSA, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, RCS-OSA, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, RCS-OSA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RCS-OSA, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, RCS-OSA, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, RCS-OSA, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


4.2.2 RCS-OSA的yaml版本二

此版本训练信息:YOLOv10n-RCSOSA-2 summary: 458 layers, 7814866 parameters, 7814850 gradients, 22.2 GFLOPs

此版本为将C2fCIB也替换为RCSOSA

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, RCSOSA, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, RCSOSA, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, RCSOSA, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, RCSOSA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RCSOSA, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, RCSOSA, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, RCSOSA, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, RCSOSA, [1024]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


4.2.3 训练代码

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
 
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')
    # model.load('yolov8n.pt') # loading pretrain weights
    model.train(data=r'替换数据集yaml文件地址',
                # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
                cache=False,
                imgsz=640,
                epochs=150,
                single_cls=False,  # 是否是单类别检测
                batch=4,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                # resume='', # 如过想续训就设置last.pt的地址
                amp=False,  # 如果出现训练损失为Nan可以关闭amp
                project='runs/train',
                name='exp',
                )


4.2.4 RCS-OSA的训练过程截图 

下面是添加了RCS-OSA的训练截图。

大家可以看下面的运行结果和添加的位置所以不存在我发的代码不全或者运行不了的问题大家有问题也可以在评论区评论我看到都会为大家解答(我知道的)。

​​​​​​


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

 专栏回顾:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1920224.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Android使用AndServer在安卓设备上搭建服务端(Java)(Kotlin)两种写法

一直都是通过OkHttp远程服务端进行数据交互,突发奇想能不能也通过OkHttp在局域网的情况下对两个安卓设备或者手机进行数据交互呢? 这样一方安卓设备要当做服务端与另一个安卓设备通过OkHttp进行数据交互即可 当然还可以通过 socket 和 ServerSocket 通…

IC后端设计中的shrink系数设置方法

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 在一些成熟的工艺节点通过shrink的方式(光照过程中缩小特征尺寸比例)得到了半节点,比如40nm从45nm shrink得到,28nm从32nm shrink得到,由于半节点的性能更优异,成本又低,漏电等不利因素也可以…

旷野之间5 - AI基础代理决策的范式转变

介绍 让我们来谈谈最近在人工智能领域引起轰动的一件事——基础代理及其彻底改变我们所知的决策的潜力。现在,我知道你可能会想,“另一天,又一个人工智能突破,乏味无趣。”但相信我,这是一个改变游戏规则的突破,值得你关注。 如果您一直在关注人工智能和人工智能代理的…

JupyterNotebook中导出当前环境,并存储为requirements.txt

​使用Anaconda管理Python环境时,可以轻松地导出环境配置,以便在其他机器或环境中重新创建相同的环境。可以通过生成一个environment.yml文件实现的,该文件包含了环境中安装的所有包及其版本。但是,常常在一些课程中JupyterNotebo…

synchronized关键字详解(全面分析)

目录 synchronized关键字详解1、synchronized关键字简介2、synchronized作用和使用场景作用使用场景①、用在代码块上(类级别同步)②、用在代码块上(对象级别同步)③、用在普通方法上(对象级别同步)④、用在静态方法上(类级别同步)总结: 3、synchronized底层原理&am…

记录些Redis题集(1)

为什么Redis要有淘汰机制? 淘汰机制的存在是必要的,因为Redis是一种基于内存的数据库,所有数据都存储在内存中。然而,内存资源是有限的。在Redis的配置文件redis.conf中,有一个关键的配置项: # maxmemory…

vue3<script setup>自定义指令

main.ts // 自定义指令 app.directive(color,(el,binding) > {el.style.color binding.value })这段代码定义了一个名为color的自定义指令,并将其注册到Vue应用实例app上。自定义指令接收两个参数:el和binding。el是绑定指令的元素,而bi…

240711_昇思学习打卡-Day23-LSTM+CRF序列标注(2)

240711_昇思学习打卡-Day23-LSTMCRF序列标注(2) 今天记录LSTMCRF序列标注的第二部分。仅作简单记录 Score计算 首先计算正确标签序列所对应的得分,这里需要注意,除了转移概率矩阵𝐏外,还需要维护两个大小…

解决鸿蒙开发中克隆项目无法签名问题

文章目录 问题描述问题分析解决方案 问题描述 在一个风和日丽的早晨,这是我学习鸿蒙开发的第四天,把文档过了一遍的我准备看看别人的项目学习一下,于是就用git去clone了一个大佬的开源项目,在签名的时候遇到了问题: h…

Codeforces Round 957 (Div. 3)(A~E题解)

这次比赛只能用抽象来形容,前五道题都没有什么算法,都是思维加模拟都能过,然后第四题卡住了,第五题不知道为什么做出来的人那么少,就是纯暴力就能过,但是没抓住上分的机会,有些可惜,…

Pytorch(笔记8神经网络nn)

1、nn.Module torch.nn是专门为深度学习而设计的模块。torch.nn的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层(layer),也可以表示一个包含很多层的神经网络。在实际使用中,最常…

可视化学习:如何用WebGL绘制3D物体

在之前的文章中,我们使用WebGL绘制了很多二维的图形和图像,在学习2D绘图的时候,我们提过很多次关于GPU的高效渲染,但是2D图形的绘制只展示了WebGL部分的能力,WebGL更强大的地方在于,它可以绘制各种3D图形&a…

一行命令快速导出、导入Python的依赖环境(Python)

文章目录 一、pip1、导出2、导入 二、Conda(简)1、导出1、导入 一、pip 1、导出 在Pycharm的Terminal窗口输入如下命令,即可将环境导出至文件requirements.txt。 pip freeze > C:\Users\sdl\Deskto\requirements.txt也可以在DOS界面执行…

python:sympy 求解一元五次方程式

pip install sympy 或者 本人用的 anaconda 3 自带 sympy 在北大数学训练营,韦东奕 用卡丹公式 巧妙 求解一元五次方程式: \latex $x^510*x^320*x-4 0$ from sympy import *x symbols(x) expr x**5 10*x**3 20*x -4# 用卡丹公式 尝试化简 a sym…

【操作系统】进程管理——用信号量机制解决问题,以生产者-消费者问题为例(个人笔记)

学习日期:2024.7.10 内容摘要:利用信号量机制解决几个经典问题模型 目录 引言 问题模型 生产者-消费者问题(经典) 多生产者-多消费者问题 吸烟者问题 读者写者问题(难点) 哲学家进餐问题&#xff0…

如何在vue的项目中导入阿里巴巴图标库

阿里巴巴矢量图标库官网:iconfont-阿里巴巴矢量图标库 选择你喜欢的图标,添加入库 点击添加至项目,并新建文件夹,点击确定 选择font-class,点击生成代码 代码生成后,在网站上打开 全选复制到style 点击复制…

Agents 要点

一、Agents概念 人类是这个星球上最强大的 Agent。Agent是一个能感知并自主地采取行动的实体,这里的自主性极其关键,Agent要能够实现设定的目标,其中包括具备学习和获取知识的能力以提高自身性能。 关键点:感知环境、自主决策、具…

SpringBoot新手快速入门系列教程十一:基于Docker Compose部署一个最简单分部署服务项目

如果您还对于Docker或者Docker Compose不甚了解,可以劳烦移步到我之前的教程: SpringBoot新手快速入门系列教程九:基于docker容器,部署一个简单的项目 SpringBoot新手快速入门系列教程十:基于Docker Compose&#xf…

CSS特效:pointer-events: none;的一种特殊应用

一、需求描述 今天看到一个设计需求:需要在弹框中显示如下界面,其中有两个效果: 1.顶部点击项目,下面的内容能相应滚动定位,同时滚动的时候顶部项目也能相应激活显示 2.顶部右侧有一个模糊渐变效果,并且要…

day29--452. 用最少数量的箭引爆气球+435. 无重叠区间+763.划分字母区间

一、452. 用最少数量的箭引爆气球 题目链接:https://leetcode.cn/problems/minimum-number-of-arrows-to-burst-balloons/ 文章讲解:https://programmercarl.com/0452.%E7%94%A8%E6%9C%80%E5%B0%91%E6%95%B0%E9%87%8F%E7%9A%84%E7%AE%AD%E5%BC%95%E7%88…