昇思25天学习打卡营第23天|K近邻算法实现红酒聚类

news2025/1/19 20:29:25

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

K近邻算法实现红酒聚类

本实验主要介绍使用MindSpore在部分wine数据集上进行KNN实验。

1、实验目的

  • 了解KNN的基本概念;
  • 了解如何使用MindSpore进行KNN实验。

2、K近邻算法原理介绍

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,最初由 Cover和Hart于1968年提出(Cover等人,1967),是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计出这些样本的类别并进行投票,票数最多的那个类就是分类的结果。KNN的三个基本要素:

  • K值,一个样本的分类是由K个邻居的“多数表决”确定的。K值越小,容易受噪声影响,反之,会使类别之间的界限变得模糊。

  • 距离度量,反映了特征空间中两个样本间的相似度,距离越小,越相似。常用的有Lp距离(p=2时,即为欧式距离)、曼哈顿距离、海明距离等。

  • 分类决策规则,通常是多数表决,或者基于距离加权的多数表决(权值与距离成反比)。

非参数统计方法是指不依赖于参数化形式(如传统统计中的正态分布假设等)的统计方法,即它们对数据分布没有严格的假设。相对于参数统计方法(如线性回归、t检验等),非参数统计方法更为灵活,因为它们不假设数据遵循特定的分布模式。

参数统计方法依赖于对数据分布做出特定的假设和要求,并通过某些参数来描述数据的分布形态。这些参数化形式可以显著简化模型和分析,但也需要这些假设和参数与实际数据相符合,当假设不满足时,可能会导致误导性的结论。
1. 线性回归(Linear Regression):
假设:因变量(响应变量)与自变量(解释变量)之间存在线性关系。
参数:回归系数(斜率和截距),通常假设误差项具有零均值、常方差(同方差性)和正态分布。
2. Logistic回归(Logistic Regression):
假设:因变量(分类变量)满足逻辑斯蒂回归模型,回归系数是固定值。
参数:回归系数,用于描述自变量对因变量的影响,通过最大似然估计进行估计。
3. t检验(t-test):
假设:样本数据来自于正态分布的总体。
参数:均值和方差,单样本t检验假设总体均值,双样本t检验假设两个总体的均值之间的差异。

 

2.1 分类问题

预测算法(分类)的流程如下:

(1)在训练样本集中找出距离待测样本x_test最近的k个样本,并保存至集合N中;

(2)统计集合N中每一类样本的个数𝐶𝑖,𝑖=1,2,3,...,𝑐;

(3)最终的分类结果为argmax𝐶𝑖 (最大的对应的𝐶𝑖)那个类。

  在上述实现过程中,k的取值尤为重要。它可以根据问题和数据特点来确定。在具体实现时,可以考虑样本的权重,即每个样本有不同的投票权重,这种方法称为带权重的k近邻算法,它是一种变种的k近邻算法。

2.2 回归问题

假设离测试样本最近的k个训练样本的标签值为𝑦𝑖,则对样本的回归预测输出值为:

即为所有邻居的标签均值。

带样本权重的回归预测函数为:

其中𝑤𝑖为第个𝑖样本的权重。

2.3 距离的定义

KNN算法的实现依赖于样本之间的距离,其中最常用的距离函数就是欧氏距离(欧几里得距离)。ℝ𝑛空间中的两点𝑥和𝑦,它们之间的欧氏距离定义为:

需要特别注意的是,使用欧氏距离时,应将特征向量的每个分量归一化,以减少因为特征值的尺度范围不同所带来的干扰,否则数值小的特征分量会被数值大的特征分量淹没。

其它的距离计算方式还有Mahalanobis距离、Bhattacharyya距离等。

3、实验环境

预备知识:

  • 熟练使用Python。
  • 具备一定的机器学习理论知识,如KNN、无监督学习、 欧式距离等。

实验环境:

  • MindSpore 2.0(MindSpore版本会定期更新,本指导也会定期刷新,与版本配套);
  • 本案例支持win_x86和Linux系统,CPU/GPU/Ascend均可运行。
  • 如果在本地运行此实验,请参考《MindSpore环境搭建实验手册》在本地安装MindSpore。

4、数据处理

4.1 数据准备

Wine数据集是模式识别最著名的数据集之一,Wine数据集的官网:Wine Data Set。这些数据是对来自意大利同一地区但来自三个不同品种的葡萄酒进行化学分析的结果。数据集分析了三种葡萄酒中每种所含13种成分的量。这些13种属性是

  1. Alcohol,酒精
  2. Malic acid,苹果酸
  3. Ash,灰
  4. Alcalinity of ash,灰的碱度
  5. Magnesium,镁
  6. Total phenols,总酚
  7. Flavanoids,类黄酮
  8. Nonflavanoid phenols,非黄酮酚
  9. Proanthocyanins,原花青素
  10. Color intensity,色彩强度
  11. Hue,色调
  12. OD280/OD315 of diluted wines,稀释酒的OD280/OD315
  13. Proline,脯氨酸
  • 方式一,从Wine数据集官网下载wine.data文件。
  • 方式二,从华为云OBS中下载wine.data文件。
KeyValueKeyValue
Data Set Characteristics:MultivariateNumber of Instances:178
Attribute Characteristics:Integer, RealNumber of Attributes:13
Associated Tasks:ClassificationMissing Values?No
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 
from download import download

# 下载红酒数据集
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MachineLearning/wine.zip"  
path = download(url, "./", kind="zip", replace=True)
Downloading data from https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MachineLearning/wine.zip (4 kB)

file_sizes: 100%|██████████████████████████| 4.09k/4.09k [00:00<00:00, 2.51MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./

4.2 数据读取与处理

导入MindSpore模块和辅助模块

在生成数据之前,导入需要的Python库。

目前使用到os库,为方便理解,其他需要的库,我们在具体使用到时再说明。

详细的MindSpore的模块说明,可以在MindSpore API页面中搜索查询。

可以通过context.set_context来配置运行需要的信息,譬如运行模式、后端信息、硬件等信息。

导入context模块,配置运行需要的信息。

%matplotlib inline
import os
import csv
import numpy as np
import matplotlib.pyplot as plt

import mindspore as ms
from mindspore import nn, ops

ms.set_context(device_target="CPU")
参考mindspore.set_context ,device_target (str) - 表示待运行的目标设备,支持 ‘Ascend’、 ‘GPU’和 ‘CPU’。如果未设置此参数,则使用MindSpore包对应的后端设备。这里在实验环境中还可以设置为Ascend。

读取Wine数据集wine.data,并查看部分数据。
with open('wine.data') as csv_file:
    data = list(csv.reader(csv_file, delimiter=','))
print(data[56:62]+data[130:133])
[['1', '14.22', '1.7', '2.3', '16.3', '118', '3.2', '3', '.26', '2.03', '6.38', '.94', '3.31', '970'], ['1', '13.29', '1.97', '2.68', '16.8', '102', '3', '3.23', '.31', '1.66', '6', '1.07', '2.84', '1270'], ['1', '13.72', '1.43', '2.5', '16.7', '108', '3.4', '3.67', '.19', '2.04', '6.8', '.89', '2.87', '1285'], ['2', '12.37', '.94', '1.36', '10.6', '88', '1.98', '.57', '.28', '.42', '1.95', '1.05', '1.82', '520'], ['2', '12.33', '1.1', '2.28', '16', '101', '2.05', '1.09', '.63', '.41', '3.27', '1.25', '1.67', '680'], ['2', '12.64', '1.36', '2.02', '16.8', '100', '2.02', '1.41', '.53', '.62', '5.75', '.98', '1.59', '450'], ['3', '12.86', '1.35', '2.32', '18', '122', '1.51', '1.25', '.21', '.94', '4.1', '.76', '1.29', '630'], ['3', '12.88', '2.99', '2.4', '20', '104', '1.3', '1.22', '.24', '.83', '5.4', '.74', '1.42', '530'], ['3', '12.81', '2.31', '2.4', '24', '98', '1.15', '1.09', '.27', '.83', '5.7', '.66', '1.36', '560']]
取三类样本(共178条),将数据集的13个属性作为自变量𝑋。将数据集的3个类别作为因变量𝑌。¶
X = np.array([[float(x) for x in s[1:]] for s in data[:178]], np.float32)
Y = np.array([s[0] for s in data[:178]], np.int32)
取样本的某两个属性进行2维可视化,可以看到在某两个属性上样本的分布情况以及可分性。
attrs = ['Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols',
         'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue',
         'OD280/OD315 of diluted wines', 'Proline']
plt.figure(figsize=(10, 8))
for i in range(0, 4):
    plt.subplot(2, 2, i+1)
    a1, a2 = 2 * i, 2 * i + 1
    plt.scatter(X[:59, a1], X[:59, a2], label='1')
    plt.scatter(X[59:130, a1], X[59:130, a2], label='2')
    plt.scatter(X[130:, a1], X[130:, a2], label='3')
    plt.xlabel(attrs[a1])
    plt.ylabel(attrs[a2])
    plt.legend()
plt.show()

从代码估计可能前59个样本是1类,59~130是2类,剩余的是3类。

从图形显示看,左上角和右下角的图形中的两个属性分类效果比较好,特别是1、2类界限比较明显。

将数据集按128:50划分为训练集(已知类别样本)和验证集(待验证样本):¶
train_idx = np.random.choice(178, 128, replace=False)
test_idx = np.array(list(set(range(178)) - set(train_idx)))
X_train, Y_train = X[train_idx], Y[train_idx]
X_test, Y_test = X[test_idx], Y[test_idx]

分解test_idx = np.array(list(set(range(178)) - set(train_idx)))
1. range(178) 生成从 0 到 177 的整数序列。
2. set(range(178)) 将这个整数序列转换为集合。集合是一种不允许重复元素的数据结构,支持高效的集合运算(如并、交、差集等)。
3. set(train_idx) 将随机选择的训练集索引列表 train_idx 转换为集合。
4. set(range(178)) - set(train_idx) 计算集合的差集运算,得到那些在 set(range(178)) 但不在 set(train_idx) 中的元素,也就是测试集的索引。这是一个集合运算,能够快速、高效地计算出差异元素。
5. list(...) 将差集运算的结果转换回列表。
6. np.array(...) 将这个列表转换为 numpy 数组,以便与 numpy 数组 X 和 Y 进行索引操作

 

5、模型构建--计算距离

利用MindSpore提供的tile, square, ReduceSum, sqrt, TopK等算子,通过矩阵运算的方式同时计算输入样本x和已明确分类的其他样本X_train的距离,并计算出top k近邻

class KnnNet(nn.Cell):
    def __init__(self, k):
        super(KnnNet, self).__init__()
        self.k = k

    def construct(self, x, X_train):
        #平铺输入x以匹配X_train中的样本数
        x_tile = ops.tile(x, (128, 1))
        square_diff = ops.square(x_tile - X_train)
        square_dist = ops.sum(square_diff, 1)
        dist = ops.sqrt(square_dist)
        #-dist表示值越大,样本就越接近
        values, indices = ops.topk(-dist, self.k)
        return indices

def knn(knn_net, x, X_train, Y_train):
    x, X_train = ms.Tensor(x), ms.Tensor(X_train)
    indices = knn_net(x, X_train)
    topk_cls = [0]*len(indices.asnumpy())
    for idx in indices.asnumpy():
        topk_cls[Y_train[idx]] += 1
    cls = np.argmax(topk_cls)
    return cls

1. 定义KNN网络类:KnnNet
__init__函数:初始化网络,设置K值(即选取的最近邻数量)。
construct函数:计算输入样本 x 与训练集 X_train 中每一个样本之间的欧氏距离,并返回距离最小的k个(即最近邻)样本的索引。
2. 定义KNN函数:knn
接收knn_net(KNN网络实例),测试样本x,训练样本X_train和训练标签Y_train作为输入。
使用knn_net找到x的k个最近邻样本,并依据这些样本的标签进行分类,返回分类结果(即预测的类别)。

 

6、模型预测

在验证集上验证KNN算法的有效性,取𝑘=5,验证精度接近80%,说明KNN算法在该3分类任务上有效,能根据酒的13种属性判断出酒的品种。

acc = 0
knn_net = KnnNet(5)
for x, y in zip(X_test, Y_test):
    pred = knn(knn_net, x, X_train, Y_train)
    acc += (pred == y)
    print('label: %d, prediction: %s' % (y, pred))
print('Validation accuracy is %f' % (acc/len(Y_test)))

计算并打印测试集的准确率
循环遍历测试集 X_test 和 Y_test 中的每一个样本,利用 knn 函数对每个样本进行分类。
统计预测正确的样本数量,计算并输出分类的准确率。

label: 1, prediction: 1
label: 2, prediction: 3
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 2
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 3
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 2
label: 1, prediction: 2
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 2
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 3
label: 3, prediction: 1
label: 3, prediction: 2
label: 3, prediction: 2
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 2
label: 1, prediction: 3
label: 3, prediction: 1
label: 3, prediction: 3
label: 3, prediction: 1
label: 3, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 3
label: 2, prediction: 3
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 1
label: 2, prediction: 3
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
Validation accuracy is 0.660000

不是每次都能达到80%,试了多次,终于有一次精确度到了80%:

label: 1, prediction: 1
label: 3, prediction: 3
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 3
label: 3, prediction: 3
label: 3, prediction: 2
label: 3, prediction: 3
label: 1, prediction: 1
label: 3, prediction: 3
label: 1, prediction: 1
label: 1, prediction: 3
label: 3, prediction: 3
label: 1, prediction: 3
label: 1, prediction: 1
label: 3, prediction: 3
label: 1, prediction: 1
label: 1, prediction: 1
label: 3, prediction: 3
label: 3, prediction: 3
label: 3, prediction: 2
label: 1, prediction: 1
label: 3, prediction: 3
label: 1, prediction: 1
label: 3, prediction: 3
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 1, prediction: 1
label: 2, prediction: 3
label: 2, prediction: 1
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 3
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 3
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 2
label: 2, prediction: 3
label: 2, prediction: 2
Validation accuracy is 0.820000

实验小结

本实验使用MindSpore实现了KNN算法,用来解决3分类问题。取wine数据集上的3类样本,分为已知类别样本和待验证样本,从验证结果可以看出KNN算法在该任务上有效,能根据酒的13种属性判断出酒的品种。

数据准备:从Wine数据集官网或华为云OBS下载数据,进行读取和处理。

数据处理:将数据集分为自变量(13种属性)和因变量(3个类别),进行可视化以观察样本分布。

模型构建:定义KNN网络结构,利用MindSpore提供的算子计算输入样本与训练样本之间的距离,找出最近的k个邻居。

模型预测:在验证集上进行预测,计算预测准确率。

实验结果显示,KNN算法在Wine数据集上的分类准确率接近80%(66%)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1919918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

液晶电子看板助力工厂打造车间精益管理数字化

在当今竞争激烈的市场环境下&#xff0c;企业追求生产智能化已成为提升竞争力的关键。要实现这一目标&#xff0c;生产现场设备联网进行数据采集是首要且基础的步骤。工业生产设备作为核心要素&#xff0c;其产生的各类数据与产品质量及企业运营效率息息相关。 在这样的背景下&…

自然语言处理基本概念

自然语言处理基本概念 所有学习循环神经网络的人都是看这一篇博客长大的&#xff1a; https://colah.github.io/posts/2015-08-Understanding-LSTMs/ import jieba import torch from torch import nns1 "我吃饭了&#xff01;" s2 "今天天气很好&#xff01…

加减计数器

目录 描述 输入描述&#xff1a; 输出描述&#xff1a; 参考代码 描述 请编写一个十进制计数器模块&#xff0c;当mode信号为1&#xff0c;计数器输出信号递增&#xff0c;当mode信号为0&#xff0c;计数器输出信号递减。每次到达0&#xff0c;给出指示信号zero。 模块的接…

【鸿蒙学习笔记】使用httpRequest进行HTTP数据请求

官方文档&#xff1a;网络管理开发概述 目录标题 访问淘宝公开接口&#xff08;测试数据&#xff09;第1步&#xff1a;module.json5 配置网络授权第2步&#xff1a;源码第3步&#xff1a;启动模拟器第4步&#xff1a;启动entry第5步&#xff1a;操作 访问淘宝公开接口&#x…

区分modbus tcp和tcp/ip

Modbus 对某些人来说&#xff0c;这听起来可能很复杂&#xff0c;也很令人费解&#xff0c;但是一旦你了解了它的工作原理&#xff0c;那就是一个特别简单的过程。MODBUS 这是一种请求和响应协议。MODBUS 主站将发起请求&#xff0c;从站将响应错误或请求信息。这就是 modbus 简…

海外媒体软文发稿:南非新闻通稿宣发,谷歌新闻收录

南非媒体介绍 南非作为非洲大陆最先进的经济体之一&#xff0c;拥有着丰富多样的媒体资源。在南非&#xff0c;各种类型的新闻报纸、杂志和网站充斥着市场。以下是一些南非主要媒体的 大舍传媒 大舍传媒是专注南非最有影响力的发稿平台之一&#xff0c;其新闻报道覆盖了南非…

【深度学习】基于深度学习的模式识别基础

一 模式识别基础 “模式”指的是数据中具有某些相似特征或属性的事物或事件的集合。具体来说&#xff0c;模式可以是以下几种形式&#xff1a; 视觉模式 在图像或视频中&#xff0c;模式可以是某种形状、颜色组合或纹理。例如&#xff0c;人脸、文字字符、手写数字等都可以视…

【鸿蒙学习笔记】通过用户首选项实现数据持久化

官方文档&#xff1a;通过用户首选项实现数据持久化 目录标题 使用场景第1步&#xff1a;源码第2步&#xff1a;启动模拟器第3步&#xff1a;启动entry第6步&#xff1a;操作样例2 使用场景 Preferences会将该数据缓存在内存中&#xff0c;当用户读取的时候&#xff0c;能够快…

千呼新零售2.0-OCR图像识别采购单视频介绍

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…

29.PLL(锁相环)-IP核的调用

&#xff08;1&#xff09;PLL IP核的简介&#xff1a; Phase Locked Loop&#xff0c;即锁相环&#xff0c;是最常用的IP核之一&#xff0c;其性能强大&#xff0c;可以对输入到FPGA的时钟信号进行任意分频、倍频、相位调整、占空比调整&#xff0c;从而输出一个期望时钟。锁相…

如何从gitlab删除仓库

嗨&#xff0c;我是兰若姐姐。今天发现gitlab上有些仓库的代码没有用&#xff0c;是个多余的仓库&#xff0c;想要删掉&#xff0c;经过一番操作之后&#xff0c;成功的删除了&#xff0c;git上没有 多余的仓库&#xff0c;看着干净舒服很多&#xff0c;现在把删除的过程分享出…

Node.js如何在Windows安装?

文章目录 主要特点&#xff1a;使用场景&#xff1a;安装方法验证是否安装成功 Node.js 是一个开源、跨平台的JavaScript运行环境&#xff0c;由Ryan Dahl于2009年创建。它允许开发者在服务器端运行JavaScript代码。Node.js 基于Chrome V8 JavaScript引擎构建&#xff0c;其设计…

各地户外分散视频监控点位,如何实现远程集中实时监看?

公司业务涉及视频监控项目承包搭建&#xff0c;此前某个项目需求是为某林业公司提供视频监控解决方案&#xff0c;需要实现各地视频摄像头的集中实时监看&#xff0c;以防止国家储备林的盗砍、盗伐行为。 公司原计划采用运营商专线连接各个视频监控点位&#xff0c;实现远程视…

前后端通信 —— HTTP/HTTPS

目录 一、HTTP/HTTPS 简介 1、HTTP 2、HTTPS 二、HTTP 工作过程 三、HTTP 消息 1、HTTP消息结构 2、HTTP消息示例 四、HTTP 方法&#xff08;常用&#xff09; 1、GET 2、POST 3、PUT 4、DELETE 5、GET与POST对比 五、HTTP 状态码&#xff08;常用&#xff09; …

【Hive SQL 每日一题】在线峰值人数计算

文章目录 测试数据需求说明需求实现 测试数据 -- 创建 user_activity 表 DROP TABLE IF EXISTS user_activity ; CREATE TABLE user_activity (user_id STRING,activity_start TIMESTAMP,activity_end TIMESTAMP );-- 插入数据 INSERT INTO user_activity VALUES (user1, 2024…

GAN生成对抗网络

GAN生成对抗网络 GANStable Diffusion GAN生成对抗网络子啊2015年横空出世&#xff0c;在当时掀起了巨大轰动&#xff0c;很多人预研它将开创一个全新的学习范式&#xff0c;当时有一个很流行的说法&#xff1a;样本不够&#xff0c;GAN来凑。现如今&#xff0c;大模型当道&…

vue+lodop实现web端打印功能

lodop官网下载地址&#xff1a;http://www.c-lodop.com/download.html 1、下载插件&#xff08;如果只是想实现打印功能&#xff0c;下载红框里的即可&#xff09; 2、解压缩&#xff0c;然后根据自己的操作系统安装控件 32位系统安装&#xff1a;install_lodop32.exe&#x…

通俗易懂,幽默诙谐,《IP 核芯志》让逻辑设计思想摆脱枯燥的标签(可下载)

在科技的广袤星空中&#xff0c;数字逻辑设计宛如一颗璀璨的明星&#xff0c;闪耀着智慧与创造的光芒。而在这光芒的深处&#xff0c;IP 核芯则是那关键的能量源泉&#xff0c;驱动着无数创新的浪潮。 《IP 核芯志——数字逻辑设计思想》犹如一座灯塔&#xff0c;照亮了我们在…

Docker Push Docker Hub

首先可以参考 Docker | 将自己的docker镜像推送到docker hub[图文详情]_如何将自己的docker镜像上传到dockerhub上-CSDN博客 将自己的镜像打标签 和 镜像推送到 docker hub上的图文注意一下 1.打标签之前 docker tag paddleocr_fast_api:1.0 hmgx/wlx:3.0 2.打标签之后 3.开…

数据结构 —— FloydWarshall算法

数据结构 —— FloydWarshall算法 FloydWarshall算法三种最短路径算法比较1. Dijkstra算法2. Bellman-Ford算法3. Floyd-Warshall算法总结 我们之前介绍的两种最短路径算法都是单源最短路径&#xff0c;就是我们要指定一个起点来寻找最短路径&#xff0c;而我们今天介绍的Floyd…