YOLOv10改进 | Conv篇 | CVPR2024最新DynamicConv替换下采样(解决低FLOPs陷阱)

news2024/9/21 8:04:35

 一、本文介绍

本文给大家带来的改进机制是CVPR2024的最新改进机制DynamicConv其是CVPR2024的最新改进机制,这个论文中介绍了一个名为ParameterNet的新型设计原则,它旨在在大规模视觉预训练模型中增加参数数量,同时尽量不增加浮点运算(FLOPs),所以本文的DynamicConv被提出来了,使得网络在保持低FLOPs的同时增加参数量,从而允许这些网络从大规模视觉预训练中获益,下面的图片为V10n和利用了DynamicConv的训练精度对比图,本文内容包含详细教程 + 代码 + 原理介绍。

  欢迎大家订阅我的专栏一起学习YOLO! 

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、原理介绍

三、核心代码

四、手把手教你添加DynamicConv机制

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、DynamicConv的yaml文件和运行记录

5.1 DynamicConv的yaml文件1

5.2 DynamicConv的yaml文件2

5.3 训练代码 

5.4 DynamicConv的训练过程截图 

五、本文总结


二、原理介绍

 

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转 

动态卷积(Dynamic Convolution)是《DynamicConv.pdf》中提出的一种关键技术,旨在增加网络的参数量而几乎不增加额外的浮点运算(FLOPs)。以下是关于动态卷积的主要信息和原理:


主要原理:

1. 动态卷积的定义:
   动态卷积通过对每个输入样本动态选择或组合不同的卷积核(称为"experts"),来处理输入数据。这种方法可以视为是对传统卷积操作的扩展,它允许网络根据输入的不同自适应地调整其参数。

2. 参数和计算的动态化:
   在动态卷积中,不是为所有输入使用固定的卷积核,而是有多个卷积核(或参数集),并且根据输入的特性动态选择使用哪个核。
   这种选择通过一个学习得到的函数(例如,使用多层感知机(MLP)和softmax函数)来动态生成控制各个卷积核贡献的权重。

3. 计算过程:
   给定输入特征X,和一组卷积核W_1, W_2, ..., W_M,每个核对应一个专家。
   每个专家的贡献由一个动态系数 \alpha_i\alpha_i控制,这些系数是针对每个输入样本动态生成的。
   输出Y是所有动态选定的卷积核操作的加权和:Y = \sum_{i=1}^M \alpha_i (X * W_i)
   其中*表示卷积操作,\alpha_i是通过一个小型网络(如MLP)动态计算得出的,这个小网络的输入是全局平均池化后的特征。

动态卷积的优点:

  • 参数效率高:通过共享和动态组合卷积核,动态卷积可以在增加极少的计算成本的情况下显著增加模型的参数量。
  • 适应性强:由于卷积核是针对每个输入动态选择的,这种方法可以更好地适应不同的输入特征,理论上可以提高模型的泛化能力。
  • 资源使用优化:动态卷积允许模型在资源有限的环境中(如移动设备)部署更复杂的网络结构,而不会显著增加计算负担。

动态卷积的设计思想突破了传统卷积网络结构的限制,通过动态调整和优化计算资源的使用,实现了在低FLOPs条件下提升网络性能的目标,这对于需要在计算资源受限的设备上运行高效AI模型的应用场景尤为重要。


三、核心代码

本节核心代码的使用方式看章节四!

import torch.nn as nn
import torch.nn.functional as F
import torch
from timm.layers import CondConv2d


__all__ = ['C2f_DynamicConv', 'DynamicConv']

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p



class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))


class DynamicConv(nn.Module):
    """ Dynamic Conv layer
    """
    def __init__(self, in_features, out_features, kernel_size=1, stride=1, padding='', dilation=1,
                 groups=1, bias=False, num_experts=4):
        super().__init__()
        # print('+++', num_experts)
        self.routing = nn.Linear(in_features, num_experts)
        self.cond_conv = CondConv2d(in_features, out_features, kernel_size, stride, padding, dilation,
                                    groups, bias, num_experts)

    def forward(self, x):
        pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1)  # CondConv routing
        routing_weights = torch.sigmoid(self.routing(pooled_inputs))
        x = self.cond_conv(x, routing_weights)
        return x



class Bottleneck_DynamicConv(nn.Module):
    # Standard bottleneck with DCN
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expand
        super().__init__()
        c_ = int(c2 * e)  # hidden channels

        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = DynamicConv(c_, c2, k[1], 1, groups=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class C2f_DynamicConv(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DynamicConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))


if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 64, 224, 224)
    image = torch.rand(*image_size)

    # Model
    model = C2f_DynamicConv(64, 64)

    out = model(image)
    print(out.size())


四、手把手教你添加DynamicConv机制

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。


4.3 修改三 

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块(用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四 

按照我的添加在parse_model里添加即可。

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、DynamicConv的yaml文件和运行记录

5.1 DynamicConv的yaml文件1

仅替换原先的Conv模块!

此版本训练信息:YOLOv10n-DynamicConv-1 summary: 385 layers, 2896642 parameters, 2896626 gradients, 7.8 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, DynamicConv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, DynamicConv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, DynamicConv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

5.2 DynamicConv的yaml文件2

替换所有的下采样模块,包括YOLOv10自带的SCDown.

此版本训练信息:YOLOv10n-DynamicConv-2 summary: 370 layers, 4898318 parameters, 4898302 gradients, 7.6 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, DynamicConv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, DynamicConv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, DynamicConv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, DynamicConv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, DynamicConv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, DynamicConv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


5.3 训练代码 

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')
    # model.load('yolov8n.pt') # loading pretrain weights
    model.train(data=r'替换数据集yaml文件地址',
                # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
                cache=False,
                imgsz=640,
                epochs=150,
                single_cls=False,  # 是否是单类别检测
                batch=4,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                # resume='', # 如过想续训就设置last.pt的地址
                amp=False,  # 如果出现训练损失为Nan可以关闭amp
                project='runs/train',
                name='exp',
                )


5.4 DynamicConv的训练过程截图 


五、本文总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1916392.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

imx6ull/linux应用编程学习(17)利用mqtt上传开发板数据,和控制开发板led(基于正点)

1.关于如何创建自己的服务器,可看上篇文章 imx6ull/linux应用编程学习(16)emqx ,mqtt创建连接mqtt.fx-CSDN博客 2.实现任务:(正点原子教程源码改) (1)用户可通过手机或电脑远程控制开发板上的…

微软Win11 24H2七月更新补丁KB5040435发布!附下载

系统之家于7月10日发出最新报道,微软为Win11用户发布了24H2版本七月的最新更新补丁KB5040435。用户升级系统后,会发现版本号升至 26100.1150。此次更新针对远程身份验证拨入用户服务(RADIUS)协议与 MD5冲突等问题进行修复。接下来跟随小编看看此次更新的…

利用 AI 解放双手:把“贾维斯”带进现实 | 开源专题 No.64

Significant-Gravitas/AutoGPT Stars: 160k License: MIT AutoGPT 是开源 AI 代理生态系统的核心工具包。 提供构建、测试和委托 AI 代理的工具。AutoGPT 处于 AI 创新前沿,提供文档、贡献指南以及快速开始创建自己的代理。包含强大的组件如 Forge 和 Benchmark&…

Ollama完整教程:本地LLM管理、WebUI对话、Python/Java客户端API应用

老牛同学在前面有关大模型应用的文章中,多次使用了Ollama来管理和部署本地大模型(包括:Qwen2、Llama3、Phi3、Gemma2等),但对Ollama这个非常方便管理本地大模型的软件的介绍却很少。 目前,清华和智谱 AI 联…

视图库对接系列(GA-T 1400)十四、视图库对接系列(本级)新增、修改订阅

说明 之前我们已经对接的设备,设备的话比较简单,是设备主动推送数据到平台的。 相信大家已经会了,那今天开始的话,我们来做对接平台,相对难点点。 但搞懂了核心的订阅流程的话,其实就不难了。 对接平台 订阅接口 订阅接口的话,有几个,添加、查询、更新、删除、取消…

【MOT】《Multiple Object Tracking in Recent Times: A Literature Review》

原文 Bashar M, Islam S, Hussain K K, et al. Multiple object tracking in recent times: A literature review[J]. arXiv preprint arXiv:2209.04796, 2022.https://arxiv.org/pdf/2209.04796 参考文章 多目标跟踪最新综述(基于Transformer/图模型/检测和关联…

RK3568平台(vendor篇)vendor storage分区

一.简介 rockchip vendor storage是一种用于存储SN, MAC, LAN, BT等数据的区域,它具有不会丢失和系统启动各个阶段都可以访问的特性。它使用GPT分区表格式,并在U-boot, kernel和用户空间中提供了相应的驱动文件和接口。 rockchip vendor storage是一种特…

硅纪元AI应用推荐 | 百度橙篇成新宠,能写万字长文

“硅纪元AI应用推荐”栏目,为您精选最新、最实用的人工智能应用,无论您是AI发烧友还是新手,都能在这里找到提升生活和工作的利器。与我们一起探索AI的无限可能,开启智慧新时代! 百度橙篇,作为百度公司在202…

软航文档控件VUE示例运行及控件替换方法记录

目录 示例运行 步骤一、npm install 步骤二、npm run dev 软航文档控件替换 附 vue小白记录一下软航文档控件VUE示例的运行方法以及示例中控件的替换过程。 示例运行 在已经安装好VUE环境的电脑上,VUE环境部署可以参考另一篇:配置VUE环境过程中 …

3.相机标定原理及代码实现(opencv)

1.相机标定原理 相机参数的确定过程就叫做相机标定。 1.1 四大坐标系及关系 (1)像素坐标系(单位:像素(pixel)) 像素坐标系是指相机拍到的图片的坐标系,以图片的左上角为坐标原点&a…

nvm安装使用 nrm使用

因维护老项目及开发新项目同时进行,需要使用不同版本的node进行运行,所以用nvm进行多个版本的node维护,通过nrm进行镜像源管理切换 简介 Node.js 是一种基于 Chrome V8 引擎的 JavaScript 运行环境,用于构建高性能的网络应用程序…

mobx学习笔记

mobx介绍 mobx是一个功能强大,上手容易的状态管理工具。MobX背后的哲学很简单:任何源自应用状态的东西都应该自动地获得。利用getter和setter来收集组件的数据依赖关系,从而在数据发生变化的时候精确知道哪些组件需要重绘。 mobx和redux的区别 mobx更…

javaweb学习day1《HTML篇》--新浪微博(前端页面的创建思路及其HTML、css代码详解)

一、前言 本篇章为javaweb的开端,也是第一篇综合案例,小编也是看着黑马程序员的视频对里面的知识点进行理解,然后自己找一个新浪微博网页看着做的,主要还是因为懒,不想去领黑马程序员的资料了。 小编任务javaweb和ja…

人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程6-sklearn机器学习之聚类问题与代码详解。在机器学习领域,聚类是一种无监督学习方法,旨在将相似的数据点划分为同一类别。sklearn是一个广泛应用于机器学习的Py…

初识C++语言(1)

目录 C语言简介 C 语言概述 C 语言的特点 语言简洁紧凑,使用灵活方便 运算符丰富 数据结构丰富 结构化语言 生成的代码质量高 可移植性强 C程序结构 C语言系统的使用 一.启动Dev-C 二、新建源程序 三…

【观察】甲骨文:用“SQL”实现AI的“融会贯通”,打通应用落地的“最后一公里”...

从2022年的ChatGPT,到2024年的Sora,生成式AI和大模型技术正以不可思议的发展速度颠覆着我们的认知。刚刚过去的一年,国内的“百模大战”更让大模型站上了市场“风口”,通过更为泛化的能力,赋予了千行万业数智化无限的想…

ChatGPT提问获取高质量答案的艺术PDF下载书籍推荐分享

ChatGPT高质量prompt技巧分享pdf, ChatGPT提问获取高质量答案的艺术pdf。本书是一本全面的指南,介绍了各种 Prompt 技术的理解和利用,用于从 ChatGPTmiki sharing中生成高质量的答案。我们将探讨如何使用不同的 Prompt 工程技术来实现不同的目…

aws sap认证考试如何轻松通过

如何高效备考AWS SAP (Solutions Architect Professional) 认证? AWS SAP认证是AWS认证体系中难度最高的认证之一,要通过这个考试确实需要下一番功夫。但通过合理规划和有效准备,你可以提高通过的几率。以下是一些建议: 评估起点 首先诚实地评估自己的AWS知识水平和实践经验。…

聚鼎科技:装饰画未来前景好不好

在这个快速变化的时代,装饰画作为家居装饰和艺术表达的一种形式,其未来前景备受各界关注。随着人们审美的多元化和居住环境的个性化需求增长,装饰画逐渐从传统领域延伸到更加广阔的生活空间。 装饰画的市场潜力不容小觑。现代社会对美的追求日…

重塑肌肤DNA!华贝甄选解锁生命活力密码

在探索生命奥秘与健康的征途中,华贝甄选携手前沿干细胞科技,为您开启一场前所未有的健康革命。我们深知,生命的活力源自细胞的不懈更新与修复,而干细胞,正是这场生命奇迹的钥匙。 【重塑内分泌平衡,焕发自…