排序算法(带动图)

news2024/11/20 0:45:15

0、算法概述

0.1 算法分类

十种常见排序算法可以分为两大类:

  • 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。

  • 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。

0.2 算法复杂度

0.3 相关概念

  • 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。

  • 不稳定:如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。

  • 时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。

  • 空间复杂度:是指算法在计算机

内执行时所需存储空间的度量,它也是数据规模n的函数。

1.冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述

  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;

  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;

  • 针对所有的元素重复以上的步骤,除了最后一个;

  • 重复步骤1~3,直到排序完成。

1.2 动图演示

1.3 代码实现

   public static void bubbleSort(int[] args) {
        int len = args.length;
        while (len > 0) {
            for (int i = 0; i < len - 1; i++) {
                int next = i + 1;
                if (args[i] > args[next]) {
                    int temp = args[next];
                    args[next] = args[i];
                    args[i] = temp;
                }
            }
            len--;
        }
    }

2、选择排序(Selection Sort)

选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

2.1 算法描述

n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1..n],有序区为空;

  • 第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;

  • n-1趟结束,数组有序化了。

2.2 动图演示

  

2.3 代码实现

public static void selectSort(int[] arr) {
 
        for (int i = 0; i < arr.length - 1; i++) {//遍历长度-1次
            int minIndex = i;
            int min = arr[i];
            for (int j = i + 1; j < arr.length; j++) {
                if (min > arr[j]) {//假定的最小值,不一定是最小
                    min = arr[j];//重置min,并不改变arr[]数组内的值
                    minIndex = j;//重置minIndex
                }
            }
            if (minIndex != i) {//最小值下标不是i,表示最小值不是它自己,则进行下面的交换
                arr[minIndex] = arr[i];//将当前轮下标i(当前轮次第一个)对应的值赋给最小值对应的下标的值,覆盖原来的值
                arr[i] = min;//让之前拿到的最小值min赋给最小值的当前轮下标i对应的值
            }
        }
    }

2.4 算法分析

表现最稳定的排序算法之一,因为无论什么数据进去都是O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

3、插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

3.1 算法描述

一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序;

  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;

  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;

  • 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;

  • 将新元素插入到该位置后;

  • 重复步骤2~5。

3.2 动图演示

3.2 代码实现

/* 插入排序 */
void insertion_sort(int arr[], int len){
    int i,j,key;
    for (i=1;i<len;i++){
        key = arr[i];
        j=i-1;
        while((j>=0) && (arr[j]>key)) {
            arr[j+1] = arr[j];
            j--;
        }
        arr[j+1] = key;
    }
}

3.4 算法分析

插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

4、希尔排序(Shell Sort)

1959年Shell发明,第一个突破O(n2)的排序算法,是简单插入排序的改进版。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序又叫缩小增量排序

4.1 算法描述

先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:

  • 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;

  • 按增量序列个数k,对序列进行k 趟排序;

  • 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

4.2 动图演示

4.3 代码实现

void shell_sort(int arr[], int len) {
    int increasement = len;
    int i, j, k;
    do
    {
        // 确定分组的增量
        increasement = increasement / 3 + 1;
        for (i = 0; i < increasement; i++)
        {
            for (j = i + increasement; j < len; j += increasement)
            {
                if (arr[j] < arr[j - increasement])
                {
                    int temp = arr[j];
                    for (k = j - increasement; k >= 0 && temp < arr[k]; k -= increasement)
                    {
                        arr[k + increasement] = arr[k];
                    }
                    arr[k + increasement] = temp;
                }
            }
        }
    } while (increasement > 1);
}

4.4 算法分析

希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版)》的合著者Robert Sedgewick提出的。 

5、归并排序(Merge Sort)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

5.1 算法描述

  • 把长度为n的输入序列分成两个长度为n/2的子序列;

  • 对这两个子序列分别采用归并排序;

  • 将两个排序好的子序列合并成一个最终的排序序列。

5.2 动图演示

5.3 代码实现

// 归并排序
void MergeSort(int arr[], int start, int end, int * temp) // start和end分别是左边界和右边界
{
    if (start >= end)
        return;
    int mid = (start + end) / 2;
    MergeSort(arr, start, mid, temp);
    MergeSort(arr, mid + 1, end, temp);
 
    // 合并两个有序序列
    int length = 0; // 表示辅助空间有多少个元素
    int i_start = start;
    int i_end = mid;
    int j_start = mid + 1;
    int j_end = end;
    while (i_start <= i_end && j_start <= j_end)
    {
        if (arr[i_start] < arr[j_start])
        {
            temp[length] = arr[i_start]; 
            length++;
            i_start++;
        }
        else
        {
            temp[length] = arr[j_start];
            length++;
            j_start++;
        }
    }
    while (i_start <= i_end)  // 把剩下数的合并
    {
        temp[length] = arr[i_start];
        i_start++;
        length++;
    }
    while (j_start <= j_end)
    {
        temp[length] = arr[j_start];
        length++;
        j_start++;
    }
    // 把辅助空间的数据放到原空间
    for (int i = 0; i < length; i++)
    {
        arr[start + i] = temp[i];
    }
}

5.4 算法分析

归并排序是一种稳定的排序方法。和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。

6、快速排序(Quick Sort)

快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

6.1 算法描述

快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

  • 从数列中挑出一个元素,称为 “基准”(pivot);

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

6.2 动图演示

6.3 代码实现

// 快速排序
void QuickSort(int arr[], int start, int end)
{
    if (start >= end)
        return;
    int i = start;
    int j = end;
    // 基准数
    int baseval = arr[start];
    while (i < j)
    {
        // 从右向左找比基准数小的数
        while (i < j && arr[j] >= baseval)
        {
            j--;
        }
        if (i < j)
        {
            arr[i] = arr[j];
            i++;
        }
        // 从左向右找比基准数大的数
        while (i < j && arr[i] < baseval)
        {
            i++;
        }
        if (i < j)
        {
            arr[j] = arr[i];
            j--;
        }
    }
    // 把基准数放到i的位置
    arr[i] = baseval;
    // 递归
    QuickSort(arr, start, i - 1);
    QuickSort(arr, i + 1, end);
}

7、堆排序(Heap Sort)

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

7.1 算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;

  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];

  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

7.2 动图演示

7.3 代码实现

#include <stdio.h>
#include <stdlib.h>

void swap(int *a, int *b) {
    int temp = *b;
    *b = *a;
    *a = temp;
}

void max_heapify(int arr[], int start, int end) {
    // 建立父节点指标和子节点指标
    int dad = start;
    int son = dad * 2 + 1;
    while (son <= end) { // 若子节点指标在范围內才做比较
        if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比较两个子节点大小,选择最大的
            son++;
        if (arr[dad] > arr[son]) //如果父节点大于子节点代表调整完毕,直接跳出函数 
            return;
        else { // 否则交换父子內容再继续子节点和父节点比较
            swap(&arr[dad], &arr[son]);
            dad = son;
            son = dad * 2 + 1;
        }
    }
}

void heap_sort(int arr[], int len) {
    int i;
    // 初始化,i从最后一个父节点开始调整
    for (i = len / 2 - 1; i >= 0; i--)
        max_heapify(arr, i, len - 1);
    // 先将第一个元素和已排好元素前一位做交换,再重新调整,直到排序完毕
    for (i = len - 1; i > 0; i--) {
        swap(&arr[0], &arr[i]);
        max_heapify(arr, 0, i - 1);
    }
}

int main() {
    int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };
    int len = (int) sizeof(arr) / sizeof(*arr);
    heap_sort(arr, len);
    int i;
    for (i = 0; i < len; i++)
        printf("%d ", arr[i]);
    printf("\n");
    return 0;
}

8、计数排序(Counting Sort)

计数排序不是基于比较的排序算法,其核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。 作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

8.1 算法描述

  • 找出待排序的数组中最大和最小的元素;

  • 统计数组中每个值为i的元素出现的次数,存入数组C的第i项;

  • 对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);

  • 反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。

8.2 动图演示

8.3 代码实现

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

void print_arr(int *arr, int n) {
        int i;
        printf("%d", arr[0]);
        for (i = 1; i < n; i++)
                printf(" %d", arr[i]);
        printf("\n");
}

void counting_sort(int *ini_arr, int *sorted_arr, int n) {
        int *count_arr = (int *) malloc(sizeof(int) * 100);
        int i, j, k;
        for (k = 0; k < 100; k++)
                count_arr[k] = 0;
        for (i = 0; i < n; i++)
                count_arr[ini_arr[i]]++;
        for (k = 1; k < 100; k++)
                count_arr[k] += count_arr[k - 1];
        for (j = n; j > 0; j--)
                sorted_arr[--count_arr[ini_arr[j - 1]]] = ini_arr[j - 1];
        free(count_arr);
}

int main(int argc, char **argv) {
        int n = 10;
        int i;
        int *arr = (int *) malloc(sizeof(int) * n);
        int *sorted_arr = (int *) malloc(sizeof(int) * n);
        srand(time(0));
        for (i = 0; i < n; i++)
                arr[i] = rand() % 100;
        printf("ini_array: ");
        print_arr(arr, n);
        counting_sort(arr, sorted_arr, n);
        printf("sorted_array: ");
        print_arr(sorted_arr, n);
        free(arr);
        free(sorted_arr);
        return 0;
}

8.4 算法分析

计数排序是一个稳定的排序算法。当输入的元素是 n 个 0到 k 之间的整数时,时间复杂度是O(n+k),空间复杂度也是O(n+k),其排序速度快于任何比较排序算法。当k不是很大并且序列比较集中时,计数排序是一个很有效的排序算法。

9、桶排序(Bucket Sort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

9.1 算法描述

  • 设置一个定量的数组当作空桶;

  • 遍历输入数据,并且把数据一个一个放到对应的桶里去;

  • 对每个不是空的桶进行排序;

  • 从不是空的桶里把排好序的数据拼接起来。

9.2 图片演示

9.3 代码实现

#include<stdio.h>
int main() {
     int book[1001],i,j,t;
     //初始化桶数组
     for(i=0;i<=1000;i++) {
       book[i] = 0;
     }
     //输入一个数n,表示接下来有n个数
     scanf("%d",&n);
     for(i = 1;i<=n;i++) {
       //把每一个数读到变量中去
       scanf("%d",&t);
       //计数  
       book[t]++;
     }
     //从大到小输出
     for(i = 1000;i>=0;i--) {
       for(j=1;j<=book[i];j++) {
         printf("%d",i);
       }
     }
    getchar();getchar();
    //getchar()用来暂停程序,以便查看程序输出的内容
    //也可以用system("pause");来代替
    return 0;
}

9.4 算法分析

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

10、基数排序(Radix Sort)

基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序。最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。

10.1 算法描述

  • 取得数组中的最大数,并取得位数;

  • arr为原始数组,从最低位开始取每个位组成radix数组;

  • 对radix进行计数排序(利用计数排序适用于小范围数的特点);

10.2 动图演示

10.3 代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>

/* 基数排序
 * 1.求出数组中最大的元素
 * 2.求出最大元素是几位数, 设为i位
 * 3.对所有的数进行i轮排序. 
 *   首先排个位, 然后是十位, 然后百位
 * 4.每一轮的排位都需要分桶, 桶是有顺序的,
 *   然后把桶里的数按顺序放入原来的数组中.
 * 5.直到i轮排序结束后, 数组排序完成.      */

/*获取数字的位数*/
int figure(int num)
{
    int count = 1;
    int temp = num / 10;

    while(temp != 0)
    {
        count++;
        temp /= 10;
    }

    return count;
}

/*查询数组中的最大数*/
int max(int *a, int n)
{
    int max = a[0];
    int i;

    for(i=1; i<n; i++)
    {
        if(a[i] > max)
        {
            max = a[i];
        }
    }

    return max;
}

/*将数字分配到各自的桶中, 然后按照桶的顺序输出排序结果*/
void sort2(int *a, int n, int loop)
{
    int *buckets[10] = {NULL};
    int c[10] = {0};
    int d[10] = {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
    int i, j, k;
    int row;
    int temp = d[loop-1];

    /*统计每个桶的元素个数*/
    for(i=0; i<n; i++)
    {
        row = (a[i] / temp) % 10;

        c[row]++;
    }

    /*为每个桶分配空间*/
    for(i=0; i<10; i++)
    {
        buckets[i] = (int *)malloc(c[i]*sizeof(int));
    }

    memset(c, 0x00, sizeof(c));

    /*将数组中的数据分配到桶中*/
    for(i=0; i<n; i++)
    {
        row = (a[i] / temp) % 10;

        buckets[row][c[row]] = a[i];

        c[row]++;
    }

    k = 0;

    /*将桶中的数, 倒回到原有数组中*/
    for(i=0; i<10; i++)
    {
        for(j=0; j<c[i]; j++)
        {
            a[k] = buckets[i][j];
            k++;
        }
    }

    /*释放桶内存*/
    for(i=0; i<10; i++)
    {
        free(buckets[i]);
        buckets[i] = NULL;
    }
}

/*基数排序*/
void sort3(int *a, int n)
{
    int m = max(a, n);
    int loop = figure(m);
    int i;

    for(i=1; i<=loop; i++)
    {
        sort2(a, n, i);
    }
}

int main()
{
    int a[] = {2, 343, 342, 1, 123, 43, 4343, 433, 687, 654, 3};
    int *p = a;
    int size;
    int i;

    /*计算数组长度*/
    size = sizeof(a) / sizeof(int);

    /*基数排序*/
    sort3(p, size);

    /*打印排序后结果*/
    for(i=0; i<size; i++)
    {
        printf("%d\n", a[i]);
    }

    return 0;
}

10.4 算法分析

基数排序基于分别排序,分别收集,所以是稳定的。但基数排序的性能比桶排序要略差,每一次关键字的桶分配都需要O(n)的时间复杂度,而且分配之后得到新的关键字序列又需要O(n)的时间复杂度。假如待排数据可以分为d个关键字,则基数排序的时间复杂度将是O(d*2n) ,当然d要远远小于n,因此基本上还是线性级别的。

基数排序的空间复杂度为O(n+k),其中k为桶的数量。一般来说n>>k,因此额外空间需要大概n个左右。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/191465.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构初阶】第七篇——二叉树的顺序结构及实现(堆的向下,向上调整算法)

二叉树的顺序结构 堆的概念及结构 堆的向下调整算法 堆的向上调整算法 堆的实现 初始化堆 销毁堆 打印堆 堆的插入 堆的删除 获取堆顶的数据 获取堆的数据个数 堆的判空 建堆的时间复杂度 二叉树的顺序结构 普通二叉树是不适合用数组来存储的,因为可能会导致大量…

为nginx配置好看的错误提示页面

前言 nginx默认错误页面确实有些丑哈&#xff0c;leeader让我换一个样式 &#xff0c;我就来喽&#xff01; 为nginx配置好看的错误提示页面前言1 找异常页原始页2 win上替换3 再linux服务器上替换4 不生效解决办法样式显示不正确6 错误页源码1 找异常页 原始页 nginx默认错误…

2个月快速通过PMP证书的经验

01 PMP证书是什么&#xff1f; 指的是项目管理专业人士资格认证。它是由美国项目管理协会&#xff08;Project Management Institute(简称PMI)&#xff09;发起的&#xff0c;严格评估项目管理人员知识技能是否具有高品质的资格认证考试。其目的是为了给项目管理人员提供统一的…

初学者的Metasploit教程 - 从基础到高级

Metasploit是使用最广泛的渗透测试工具之一&#xff0c;是一个非常强大的多合一工具&#xff0c;用于执行渗透测试的不同步骤。 文章目录前言安装Metasploit在 Linux 上安装 Metasploit了解 Metasploit 的版本并更新渗透测试的基础知识1. 信息收集/侦察2. 漏洞分析3.渗透4. 渗透…

OSCP_VULHUB_Hack the Kioptrix Level-1.2

文章目录前言渗透方法论&#xff08;方法一&#xff09;渗透方法论&#xff08;方法二&#xff09;第一种sqlmap扫描&提取数据库和用户凭证ssh登录使用 SUID 位和 SUDO 二进制文件利用目标第二种方法searchsploit LotusCMS前言 Kioptrix 的 CTF 挑战&#xff1a;Level1.2 …

Linux搭建Hyperledger Fabric区块链框架 - Hyperledger Fabric 概念

企业选型的区块链底层技术 Hyperledger Fabric 概念 2015年&#xff0c;Linux基金会启动了Hyperledger项目&#xff0c;目标是发展跨行业的区块链技术。 Hyperledger Fabric是Hyperledger中的一个区块链项目&#xff0c;包含一个账本&#xff0c;使用智能合约并且是一个通过所…

上海亚商投顾:三大指数均涨约1% 两市近4300股飘红

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。市场情绪三大指数早盘冲高回落&#xff0c;午后又震荡走强&#xff0c;深成指、创业板指均涨超1.2%。人工智能概念掀涨停潮&a…

Pytorch实战笔记(3)——BERT实现情感分析

本文展示的是使用 Pytorch 构建一个 BERT 来实现情感分析。本文的架构是第一章详细介绍 BERT&#xff0c;其中包括 Self-attention&#xff0c;Transformer 的 Encoder&#xff0c;BERT 的输入与输出&#xff0c;以及 BERT 的预训练和微调方式&#xff1b;第二章是核心代码部分…

机器视觉_HALCON_HDevelop用户指南_4.HDevelop开发程序

文章目录四、HDevelop编程4.1. 新建一个新程序4.2. 输入一个算子4.3. 指定参数4.4. 获取帮助4.5. 添加其他程序4.6. 理解图像显示4.7. 检查变量4.8. 利用灰度直方图改进阈值4.9. 编辑代码行4.10. 重新执行程序4.11. 保存程序4.12. 选择特征区域4.13. 打开图形窗口4.14. 循环遍历…

Swig工具在win10上使用

SWIG 是一种软件开发工具&#xff0c;它将 C 和 C 编写的程序与各种高级编程语言连接起来。这里我们用它来将 C/C 转换成 Java。 一、Swig安装 1、下载 官网&#xff1a;SWIG官网下载 源码链接 GitHub&#xff1a;https://github.com/swig/swig.git 这两个地址可能会出现无…

STM32单片机智能蓝牙APP加油站火灾预警安防防控报警监控系统MQ2DHT11

实践制作DIY- GC0122-智能蓝牙APP加油站火灾预警 一、功能说明&#xff1a; 基于STM32单片机设计-智能蓝牙APP加油站火灾预警 功能介绍&#xff1a; 基于STM32F103C系列最小系统&#xff0c;MQ-2烟雾传感器&#xff0c;火焰传感器&#xff08;不能直视阳光会受到阳光干扰&…

Cesium 渐变长方体实现-Shader

position获取: 1.1 在cesium中,可通过vec4 p = czm_computePosition();获取 模型坐标中相对于眼睛的位置矩阵 1.2 vec4 eyePosition = czm_modelViewRelativeToEye * p; // position in eye coordinates 获取eyePosition 1.3 v_positionEC = czm_inverseModelView * eyePo…

Python流程控制详解

和其它编程语言一样&#xff0c;Python流程控制可分为 3 大结构&#xff1a;顺序结构、选择&#xff08;分支&#xff09;结构和循环结构。 Python对缩进的要求&#xff08;重点&#xff09; Python 是一门非常独特的编程语言&#xff0c;它通过缩进来识别代码块&#xff0c;…

ConditionalOnBean详解及ConditionalOn××总结

ConditionalOnBean详解 为什么学习ConditionalOnBean 在学习 Springboot 自动装配的时候遇到 Bean 装配和 Bean 配置需要条件判断的场景时&#xff0c;查阅了相关内容了解到 Conditional 和 ConditionalOnBean 注解&#xff0c;深入学习之后受益匪浅。 ConditionalOnBean测试…

后量子 KEM 方案:Newhope

参考文献&#xff1a; Lyubashevsky V, Peikert C, Regev O. On ideal lattices and learning with errors over rings[J]. Journal of the ACM (JACM), 2013, 60(6): 1-35.Lyubashevsky V, Peikert C, Regev O. A toolkit for ring-LWE cryptography[C]//Advances in Cryptol…

Linux常见指令大全(一)

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…

POE交换机全方位解读(上)

POE交换机在安防行业的应用&#xff0c;给视频监控系统带来了质的改变&#xff0c;POE交换机。可通过网线为无线AP、网路摄像头等PoE终端设备供电&#xff0c;传送距离可达100m&#xff0c;安装简单&#xff0c;即插即用。非常适合无线城市、安防监控等行业使用。 POE供电方案及…

「融云政企数智办公解决方案」入选「大信创产品目录」

1月31日&#xff0c;CIO 时代、新基建创新研究院联合公布“大信创产品目录”&#xff0c;“融云政企数智办公解决方案”成功通过审核&#xff0c;被正式纳入“大信创产品目录”。 据悉&#xff0c;CIO 时代、新基建创新研究院从去年底开始组织开展“大信创产品目录”征集工作&a…

【C语言 数据结构】数组与对称矩阵的压缩存储

文章目录数组的定义数组的顺序表示和实现顺序表中查找和修改数组元素矩阵的压缩存储特殊矩阵稀疏矩阵数组的定义 提到数组&#xff0c;大家首先会想到的是&#xff1a;很多编程语言中都提供有数组这种数据类型&#xff0c;比如 C/C、Java、Go、C# 等。但本节我要讲解的不是作为…

frp构建多级网络代理

简介frp 是一个专注于内网穿透的高性能的反向代理应用&#xff0c;支持 TCP、UDP、HTTP、HTTPS 等多种协议&#xff0c;采用 Golang 编写&#xff0c;支持跨平台&#xff0c;仅需下载对应平台的二进制文件即可执行&#xff0c;没有额外依赖。frp可以将内网服务以安全、便捷的方…