【昇思25天学习打卡营打卡指南-第二十二天】GAN图像生成

news2024/9/28 15:32:10

GAN图像生成

模型简介

生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。

最初,GAN由Ian J. Goodfellow于2014年发明,并在论文Generative Adversarial Nets中首次进行了描述,其主要由两个不同的模型共同组成——生成器(Generative Model)和判别器(Discriminative Model):

  • 生成器的任务是生成看起来像训练图像的“假”图像;
  • 判别器需要判断从生成器输出的图像是真实的训练图像还是虚假的图像。

GAN通过设计生成模型和判别模型这两个模块,使其互相博弈学习产生了相当好的输出。

GAN模型的核心在于提出了通过对抗过程来估计生成模型这一全新框架。在这个框架中,将会同时训练两个模型——捕捉数据分布的生成模型 G G G 和估计样本是否来自训练数据的判别模型 D D D

在训练过程中,生成器会不断尝试通过生成更好的假图像来骗过判别器,而判别器在这过程中也会逐步提升判别能力。这种博弈的平衡点是,当生成器生成的假图像和训练数据图像的分布完全一致时,判别器拥有50%的真假判断置信度。

x x x 代表图像数据,用 D ( x ) D(x) D(x)表示判别器网络给出图像判定为真实图像的概率。在判别过程中, D ( x ) D(x) D(x) 需要处理作为二进制文件的大小为 1 × 28 × 28 1\times 28\times 28 1×28×28 的图像数据。当 x x x 来自训练数据时, D ( x ) D(x) D(x) 数值应该趋近于 1 1 1 ;而当 x x x 来自生成器时, D ( x ) D(x) D(x) 数值应该趋近于 0 0 0 。因此 D ( x ) D(x) D(x) 也可以被认为是传统的二分类器。

z z z 代表标准正态分布中提取出的隐码(隐向量),用 G ( z ) G(z) G(z):表示将隐码(隐向量) z z z 映射到数据空间的生成器函数。函数 G ( z ) G(z) G(z) 的目标是将服从高斯分布的随机噪声 z z z 通过生成网络变换为近似于真实分布 p d a t a ( x ) p_{data}(x) pdata(x) 的数据分布,我们希望找到 θ θ θ 使得 p G ( x ; θ ) p_{G}(x;\theta) pG(x;θ) p d a t a ( x ) p_{data}(x) pdata(x) 尽可能的接近,其中 θ \theta θ 代表网络参数。

D ( G ( z ) ) D(G(z)) D(G(z)) 表示生成器 G G G 生成的假图像被判定为真实图像的概率,如Generative Adversarial Nets中所述, D D D G G G 在进行一场博弈, D D D 想要最大程度的正确分类真图像与假图像,也就是参数 log ⁡ D ( x ) \log D(x) logD(x);而 G G G 试图欺骗 D D D 来最小化假图像被识别到的概率,也就是参数 log ⁡ ( 1 − D ( G ( z ) ) ) \log(1−D(G(z))) log(1D(G(z)))。因此GAN的损失函数为:

min ⁡ G max ⁡ D V ( D , G ) = E x ∼ p d a t a     ( x ) [ log ⁡ D ( x ) ] + E z ∼ p z   ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min\limits_{G}\max\limits_{D} V(D,G)=E_{x\sim p_{data}\;\,(x)}[\log D(x)]+E_{z\sim p_{z}\,(z)}[\log (1-D(G(z)))] GminDmaxV(D,G)=Expdata(x)[logD(x)]+Ezpz(z)[log(1D(G(z)))]

从理论上讲,此博弈游戏的平衡点是 p G ( x ; θ ) = p d a t a ( x ) p_{G}(x;\theta) = p_{data}(x) pG(x;θ)=pdata(x),此时判别器会随机猜测输入是真图像还是假图像。下面我们简要说明生成器和判别器的博弈过程:

  1. 在训练刚开始的时候,生成器和判别器的质量都比较差,生成器会随机生成一个数据分布。
  2. 判别器通过求取梯度和损失函数对网络进行优化,将靠近真实数据分布的数据判定为1,将靠近生成器生成出来数据分布的数据判定为0。
  3. 生成器通过优化,生成出更加贴近真实数据分布的数据。
  4. 生成器所生成的数据和真实数据达到相同的分布,此时判别器的输出为1/2。

image.png

在上图中,蓝色虚线表示判别器,黑色虚线表示真实数据分布,绿色实线表示生成器生成的虚假数据分布, z z z 表示隐码, x x x 表示生成的虚假图像 G ( z ) G(z) G(z)。该图片来源于Generative Adversarial Nets。详细的训练方法介绍见原论文。

数据集

数据集简介

MNIST手写数字数据集是NIST数据集的子集,共有70000张手写数字图片,包含60000张训练样本和10000张测试样本,数字图片为二进制文件,图片大小为28*28,单通道。图片已经预先进行了尺寸归一化和中心化处理。

本案例将使用MNIST手写数字数据集来训练一个生成式对抗网络,使用该网络模拟生成手写数字图片。

数据集下载

使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。数据下载之前需要使用pip install download安装download包。

下载解压后的数据集目录结构如下:

./MNIST_Data/
├─ train
│ ├─ train-images-idx3-ubyte
│ └─ train-labels-idx1-ubyte
└─ test
   ├─ t10k-images-idx3-ubyte
   └─ t10k-labels-idx1-ubyte

数据下载的代码如下:

# 数据下载
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip"
download(url, ".", kind="zip", replace=True)

数据加载

使用MindSpore自己的MnistDatase接口,读取和解析MNIST数据集的源文件构建数据集。然后对数据进行一些前处理。

import numpy as np
import mindspore.dataset as ds

batch_size = 64
latent_size = 100  # 隐码的长度

train_dataset = ds.MnistDataset(dataset_dir='./MNIST_Data/train')
test_dataset = ds.MnistDataset(dataset_dir='./MNIST_Data/test')

def data_load(dataset):
    dataset1 = ds.GeneratorDataset(dataset, ["image", "label"], shuffle=True, python_multiprocessing=False,num_samples=10000)
    # 数据增强
    mnist_ds = dataset1.map(
        operations=lambda x: (x.astype("float32"), np.random.normal(size=latent_size).astype("float32")),
        output_columns=["image", "latent_code"])
    mnist_ds = mnist_ds.project(["image", "latent_code"])

    # 批量操作
    mnist_ds = mnist_ds.batch(batch_size, True)

    return mnist_ds

mnist_ds = data_load(train_dataset)

iter_size = mnist_ds.get_dataset_size()
print('Iter size: %d' % iter_size)

数据集可视化

通过create_dict_iterator函数将数据转换成字典迭代器,然后使用matplotlib模块可视化部分训练数据。

import matplotlib.pyplot as plt

data_iter = next(mnist_ds.create_dict_iterator(output_numpy=True))
figure = plt.figure(figsize=(3, 3))
cols, rows = 5, 5
for idx in range(1, cols * rows + 1):
    image = data_iter['image'][idx]
    figure.add_subplot(rows, cols, idx)
    plt.axis("off")
    plt.imshow(image.squeeze(), cmap="gray")
plt.show()

image.png

隐码构造

为了跟踪生成器的学习进度,我们在训练的过程中的每轮迭代结束后,将一组固定的遵循高斯分布的隐码test_noise输入到生成器中,通过固定隐码所生成的图像效果来评估生成器的好坏。

import random
import numpy as np
from mindspore import Tensor
from mindspore.common import dtype

# 利用随机种子创建一批隐码
np.random.seed(2323)
test_noise = Tensor(np.random.normal(size=(25, 100)), dtype.float32)
random.shuffle(test_noise)

模型构建

本案例实现中所搭建的 GAN 模型结构与原论文中提出的 GAN 结构大致相同,但由于所用数据集 MNIST 为单通道小尺寸图片,可识别参数少,便于训练,我们在判别器和生成器中采用全连接网络架构和 ReLU 激活函数即可达到令人满意的效果,且省略了原论文中用于减少参数的 Dropout 策略和可学习激活函数 Maxout

生成器

生成器 Generator 的功能是将隐码映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的灰度图像(或 RGB 彩色图像)。在本案例演示中,该功能通过五层 Dense 全连接层来完成的,每层都与 BatchNorm1d 批归一化层和 ReLU 激活层配对,输出数据会经过 Tanh 函数,使其返回 [-1,1] 的数据范围内。注意实例化生成器之后需要修改参数的名称,不然静态图模式下会报错。

from mindspore import nn
import mindspore.ops as ops

img_size = 28  # 训练图像长(宽)

class Generator(nn.Cell):
    def __init__(self, latent_size, auto_prefix=True):
        super(Generator, self).__init__(auto_prefix=auto_prefix)
        self.model = nn.SequentialCell()
        # [N, 100] -> [N, 128]
        # 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维
        self.model.append(nn.Dense(latent_size, 128))
        self.model.append(nn.ReLU())
        # [N, 128] -> [N, 256]
        self.model.append(nn.Dense(128, 256))
        self.model.append(nn.BatchNorm1d(256))
        self.model.append(nn.ReLU())
        # [N, 256] -> [N, 512]
        self.model.append(nn.Dense(256, 512))
        self.model.append(nn.BatchNorm1d(512))
        self.model.append(nn.ReLU())
        # [N, 512] -> [N, 1024]
        self.model.append(nn.Dense(512, 1024))
        self.model.append(nn.BatchNorm1d(1024))
        self.model.append(nn.ReLU())
        # [N, 1024] -> [N, 784]
        # 经过线性变换将其变成784维
        self.model.append(nn.Dense(1024, img_size * img_size))
        # 经过Tanh激活函数是希望生成的假的图片数据分布能够在-1~1之间
        self.model.append(nn.Tanh())

    def construct(self, x):
        img = self.model(x)
        return ops.reshape(img, (-1, 1, 28, 28))

net_g = Generator(latent_size)
net_g.update_parameters_name('generator')

判别器

如前所述,判别器 Discriminator 是一个二分类网络模型,输出判定该图像为真实图的概率。主要通过一系列的 Dense 层和 LeakyReLU 层对其进行处理,最后通过 Sigmoid 激活函数,使其返回 [0, 1] 的数据范围内,得到最终概率。注意实例化判别器之后需要修改参数的名称,不然静态图模式下会报错。

 # 判别器
class Discriminator(nn.Cell):
    def __init__(self, auto_prefix=True):
        super().__init__(auto_prefix=auto_prefix)
        self.model = nn.SequentialCell()
        # [N, 784] -> [N, 512]
        self.model.append(nn.Dense(img_size * img_size, 512))  # 输入特征数为784,输出为512
        self.model.append(nn.LeakyReLU())  # 默认斜率为0.2的非线性映射激活函数
        # [N, 512] -> [N, 256]
        self.model.append(nn.Dense(512, 256))  # 进行一个线性映射
        self.model.append(nn.LeakyReLU())
        # [N, 256] -> [N, 1]
        self.model.append(nn.Dense(256, 1))
        self.model.append(nn.Sigmoid())  # 二分类激活函数,将实数映射到[0,1]

    def construct(self, x):
        x_flat = ops.reshape(x, (-1, img_size * img_size))
        return self.model(x_flat)

net_d = Discriminator()
net_d.update_parameters_name('discriminator')

损失函数和优化器

定义了 GeneratorDiscriminator 后,损失函数使用MindSpore中二进制交叉熵损失函数BCELoss ;这里生成器和判别器都是使用Adam优化器,但是需要构建两个不同名称的优化器,分别用于更新两个模型的参数,详情见下文代码。注意优化器的参数名称也需要修改。

lr = 0.0002  # 学习率

# 损失函数
adversarial_loss = nn.BCELoss(reduction='mean')

# 优化器
optimizer_d = nn.Adam(net_d.trainable_params(), learning_rate=lr, beta1=0.5, beta2=0.999)
optimizer_g = nn.Adam(net_g.trainable_params(), learning_rate=lr, beta1=0.5, beta2=0.999)
optimizer_g.update_parameters_name('optim_g')
optimizer_d.update_parameters_name('optim_d')

模型训练

训练分为两个主要部分。

第一部分是训练判别器。训练判别器的目的是最大程度地提高判别图像真伪的概率。按照原论文的方法,通过提高其随机梯度来更新判别器,最大化 l o g D ( x ) + l o g ( 1 − D ( G ( z ) ) log D(x) + log(1 - D(G(z)) logD(x)+log(1D(G(z)) 的值。

第二部分是训练生成器。如论文所述,最小化 l o g ( 1 − D ( G ( z ) ) ) log(1 - D(G(z))) log(1D(G(z))) 来训练生成器,以产生更好的虚假图像。

在这两个部分中,分别获取训练过程中的损失,并在每轮迭代结束时进行测试,将隐码批量推送到生成器中,以直观地跟踪生成器 Generator 的训练效果。

import os
import time
import matplotlib.pyplot as plt
import mindspore as ms
from mindspore import Tensor, save_checkpoint

total_epoch = 12  # 训练周期数
batch_size = 64  # 用于训练的训练集批量大小

# 加载预训练模型的参数
pred_trained = False
pred_trained_g = './result/checkpoints/Generator99.ckpt'
pred_trained_d = './result/checkpoints/Discriminator99.ckpt'

checkpoints_path = "./result/checkpoints"  # 结果保存路径
image_path = "./result/images"  # 测试结果保存路径

# 生成器计算损失过程
def generator_forward(test_noises):
    fake_data = net_g(test_noises)
    fake_out = net_d(fake_data)
    loss_g = adversarial_loss(fake_out, ops.ones_like(fake_out))
    return loss_g


# 判别器计算损失过程
def discriminator_forward(real_data, test_noises):
    fake_data = net_g(test_noises)
    fake_out = net_d(fake_data)
    real_out = net_d(real_data)
    real_loss = adversarial_loss(real_out, ops.ones_like(real_out))
    fake_loss = adversarial_loss(fake_out, ops.zeros_like(fake_out))
    loss_d = real_loss + fake_loss
    return loss_d

# 梯度方法
grad_g = ms.value_and_grad(generator_forward, None, net_g.trainable_params())
grad_d = ms.value_and_grad(discriminator_forward, None, net_d.trainable_params())

def train_step(real_data, latent_code):
    # 计算判别器损失和梯度
    loss_d, grads_d = grad_d(real_data, latent_code)
    optimizer_d(grads_d)
    loss_g, grads_g = grad_g(latent_code)
    optimizer_g(grads_g)

    return loss_d, loss_g

# 保存生成的test图像
def save_imgs(gen_imgs1, idx):
    for i3 in range(gen_imgs1.shape[0]):
        plt.subplot(5, 5, i3 + 1)
        plt.imshow(gen_imgs1[i3, 0, :, :] / 2 + 0.5, cmap="gray")
        plt.axis("off")
    plt.savefig(image_path + "/test_{}.png".format(idx))

# 设置参数保存路径
os.makedirs(checkpoints_path, exist_ok=True)
# 设置中间过程生成图片保存路径
os.makedirs(image_path, exist_ok=True)

net_g.set_train()
net_d.set_train()

# 储存生成器和判别器loss
losses_g, losses_d = [], []

for epoch in range(total_epoch):
    start = time.time()
    for (iter, data) in enumerate(mnist_ds):
        start1 = time.time()
        image, latent_code = data
        image = (image - 127.5) / 127.5  # [0, 255] -> [-1, 1]
        image = image.reshape(image.shape[0], 1, image.shape[1], image.shape[2])
        d_loss, g_loss = train_step(image, latent_code)
        end1 = time.time()
        if iter % 10 == 10:
            print(f"Epoch:[{int(epoch):>3d}/{int(total_epoch):>3d}], "
                  f"step:[{int(iter):>4d}/{int(iter_size):>4d}], "
                  f"loss_d:{d_loss.asnumpy():>4f} , "
                  f"loss_g:{g_loss.asnumpy():>4f} , "
                  f"time:{(end1 - start1):>3f}s, "
                  f"lr:{lr:>6f}")

    end = time.time()
    print("time of epoch {} is {:.2f}s".format(epoch + 1, end - start))

    losses_d.append(d_loss.asnumpy())
    losses_g.append(g_loss.asnumpy())

    # 每个epoch结束后,使用生成器生成一组图片
    gen_imgs = net_g(test_noise)
    save_imgs(gen_imgs.asnumpy(), epoch)

    # 根据epoch保存模型权重文件
    if epoch % 1 == 0:
        save_checkpoint(net_g, checkpoints_path + "/Generator%d.ckpt" % (epoch))
        save_checkpoint(net_d, checkpoints_path + "/Discriminator%d.ckpt" % (epoch))

运行结果

time of epoch 1 is 68.72s
time of epoch 2 is 6.78s
time of epoch 3 is 6.88s
time of epoch 4 is 7.12s
time of epoch 5 is 7.06s
time of epoch 6 is 6.72s
time of epoch 7 is 6.88s
time of epoch 8 is 6.81s
time of epoch 9 is 6.80s
time of epoch 10 is 6.77s
time of epoch 11 is 6.78s
time of epoch 12 is 6.86s

image.png

效果展示

运行下面代码,描绘DG损失与训练迭代的关系图:

plt.figure(figsize=(6, 4))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(losses_g, label="G", color='blue')
plt.plot(losses_d, label="D", color='orange')
plt.xlim(-5,15)
plt.ylim(0, 3.5)
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

image.png

可视化训练过程中通过隐向量生成的图像。

import cv2
import matplotlib.animation as animation

# 将训练过程中生成的测试图转为动态图
image_list = []
for i in range(total_epoch):
    image_list.append(cv2.imread(image_path + "/test_{}.png".format(i), cv2.IMREAD_GRAYSCALE))
show_list = []
fig = plt.figure(dpi=70)
for epoch in range(0, len(image_list), 5):
    plt.axis("off")
    show_list.append([plt.imshow(image_list[epoch], cmap='gray')])

ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
ani.save('train_test.gif', writer='pillow', fps=1)

image.png

从上面的图像可以看出,随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当 epoch 达到100以上时,生成的手写数字图片与数据集中的较为相似。下面我们通过加载生成器网络模型参数文件来生成图像,代码如下:

模型推理

下面我们通过加载生成器网络模型参数文件来生成图像,代码如下:

import mindspore as ms

# test_ckpt = './result/checkpoints/Generator199.ckpt'

# parameter = ms.load_checkpoint(test_ckpt)
# ms.load_param_into_net(net_g, parameter)
# 模型生成结果
test_data = Tensor(np.random.normal(0, 1, (25, 100)).astype(np.float32))
images = net_g(test_data).transpose(0, 2, 3, 1).asnumpy()
# 结果展示
fig = plt.figure(figsize=(3, 3), dpi=120)
for i in range(25):
    fig.add_subplot(5, 5, i + 1)
    plt.axis("off")
    plt.imshow(images[i].squeeze(), cmap="gray")
plt.show()

image.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1914066.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

国产口碑最好的骨传导耳机有哪些?优选五大高口碑机型推荐!

作为一名有着多年工作经验的数码测评师,可以说对骨传导耳机或者蓝牙耳机等数码产品有着深入的了解,近期,有很多粉丝,或者身边的朋友经常向我咨询关于骨传导耳机的问题。确实如此,优质的骨传导耳机能在保护听力、保持环…

AI知识库:以AI之力,引领企业知识管理新纪元

在当今这个信息爆炸的时代,企业面临着前所未有的知识管理挑战。随着数据量的激增,如何高效地整理、存储并快速检索海量信息,成为了每个企业亟需解决的核心问题。 在过去,企业的知识库常常被视为一种必要的负担。它们充满了冗长复…

侯捷C++面向对象高级编程(下)-2-non-explicit one argument constructor

1.构造函数 构造函数: Fraction(int num, int den 1) 初始化分子和分母,允许指定分子 num 和可选的分母 den。默认情况下,分母为 1。 加法运算符重载: Fraction operator(const Fraction& f) 重载了加法运算符 。这使得两个 Fraction 对象可以通过 …

【蓄势·致远】 同为科技(TOWE)2024年年中会议

2024年7月2日-8日,同为科技(TOWE)召开2024年年中工作会议。会议回顾上半年总体工作情况,分析研判发展形势,规划部署下半年工作。 为期一周的工作会议,由同为科技(TOWE)创始人、董事长…

vue 画二维码及长按保存

需求 想要做如下图的二维码带文字&#xff0c;且能够长按保存 前期准备 一个canvas安装qrcode&#xff08;命令&#xff1a;npm i qrcode&#xff09; 画二维码及文字 初始化画布 <template><div><canvas ref"canvas" width"300" he…

C# + halcon 联合编程示例

C# halcon 联合编程示例 实现功能 1.加载图像 2.画直线&#xff0c;画圆&#xff0c;画矩形, 画椭圆 ROI&#xff0c;可以调整大小和位置 3.实现找边&#xff0c;找圆功能 效果 开发环境 Visual Studio 2022 .NET Framework 4.8 halcondotnet.dll 查看帮助文档 项目结构 DL…

大模型“聚会”:国内卷价格,国外卷能力

[ GPT-4o和谷歌Gemini不断宣传现阶段AI能力大幅度提高&#xff0c;那么这两家&#xff0c;谁的大模型能力更强呢&#xff1f;这篇文章里&#xff0c;作者就展开了多维度的测试和体验&#xff0c;想了解的同学&#xff0c;可以来看一下。 在中美AI大模型的竞争上&#xff0c;正衍…

CDF累积分布函数和PPF百分点位分布函数

目录 cdf累积分布函数 (CDF) ppf百分位点函数 (PPF) 区别与联系示例关系和区别 cdf 累积分布函数 (CDF) 定义&#xff1a; 累积分布函数 F ( x ) F(x) F(x) 给出随机变量 X X X 小于或等于某个值 x x x 的概率。数学定义&#xff1a; F ( x ) P ( X ≤ x ) F(x) P(X \l…

[C++]——同步异步日志系统(3)

同步异步日志系统 一、日志系统框架设计1.1模块划分1.1.1 日志等级模块1.1.2 日志消息模块1.1.3 日志消息格式化模块1.1.4 日志落地模块&#xff08;日志落地的方向是工厂模式&#xff09;1.1.5 日志器模块&#xff08;日志器的生成是建造者模式&#xff09;1.1.6 异步线程模块…

Coze API接口实战应用

Coze API介绍 概述 Coze API作为Coze平台对外的桥梁&#xff0c;让开发者能够灵活地利用Coze的功能和服务&#xff0c;促进业务流程自动化和系统集成。它覆盖了从数据获取到智能交互的全方位功能&#xff0c;旨在提升工作效率和创造更多可能。 Coze API申请接入流程 1. 发现…

python--实验8 函数(2)

知识点 变量的作用域 定义&#xff1a;解释了局部变量和全局变量的概念。局部变量&#xff1a; 局部变量是在函数内部定义的变量。它们只在该函数内部可见&#xff0c;一旦函数执行完毕&#xff0c;这些变量就会被销毁。例子&#xff1a;在函数内部通过赋值创建的变量。全局…

【卡尔曼滤波】高斯白噪声

生成高斯白噪声并将其应用于信号处理 生成高斯白噪声并将其应用于信号处理 #以下是一个生成高斯白噪声并将其应用于信号处理的示例代码:import numpy as np import matplotlib.pyplot as plt import matplotlib.font_manager ## not work#notice matplotlibrc is a file, not…

hf-mirror (huggingface 的国内镜像)

官网&#xff1a; https://hf-mirror.com/ 网站域名 hf-mirror.com&#xff0c;用于镜像 huggingface.co 域名。作为一个公益项目&#xff0c;致力于帮助国内AI开发者快速、稳定的下载模型、数据集。 如何使用HF-Mirror 方法一&#xff1a;网页下载 在https://hf-mirror.com/…

ubuntu笔记本X86安装nomachine客户端

资源下载: 链接: link 一、首先下载文件 nomachine_8.2.3_4_x86_64.tar.gz到桌面。 二、打开终端,依次输入 进入root模式,需要输入密码,密码不可见。 sudu su复制nomachine_8.2.3_4_x86_64.tar.gz粘贴到/usr目录: cp -r nomachine_8.2.3_4_x86_64.tar.gz /usr进入

使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击-敌机配置(五)

文章目录 开发思路敌人节点场景绿色敌人制作 使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击&#xff08;一&#xff09; 使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击-激光组件&#xff08;二&#xff09; 使用Godot4组件制作竖版太空射击游戏_2D卷轴飞机射击-飞船…

强化学习总结(有具体代码实现)

文章目录 第一部分 强化学习基础第1章 强化学习概述1.1 强化学习概念1.2 强化学习的环境1.3 强化学习的目标1.4 强化学习的数据 第2章 多臂老虎机问题&#xff08;MAB问题&#xff09;2.1 问题描述2.1.1 问题定义2.1.2 形式化描述2.1.3 累积懊悔2.1.4 估计期望奖励 2.2 解决方法…

(自用)gtest单元测试

gtest是Google的一套用于编写C测试的框架&#xff0c;可以运行在很多平台上&#xff08;包括Linux、Mac OS X、Windows、Cygwin等等&#xff09;。基于xUnit架构。支持很多好用的特性&#xff0c;包括自动识别测试、丰富的断言、断言自定义、死亡测试、非终止的失败、生成XML报…

跑GCN收敛实验时遇到的Python环境问题

错误1&#xff1a; 报错提示&#xff1a;No module named sklearn.utils.linear_assignment_ 原因&#xff1a;linear_assignment 函数从0.21开始被弃用了&#xff0c;并且将在0.23版本中移除。 解决方法&#xff1a;降低scikit-learn版本&#xff08;本人通过该方法解决&#…

从零开始开发视频美颜SDK:实现直播美颜效果

因此&#xff0c;开发一款从零开始的视频美颜SDK&#xff0c;不仅可以节省成本&#xff0c;还能根据具体需求进行个性化调整。本文将介绍从零开始开发视频美颜SDK的关键步骤和实现思路。 一、需求分析与技术选型 在开发一款视频美颜SDK之前&#xff0c;首先需要进行详细的需求…

自定义指令实现Element Plus分页组件内容样式修改

改之前是这样的 改之后是这样的 因为之前我也有写过文章讲解Vue2-ElementUI分页组件的样式修改。 ElementUI 分页组件内容样式修改https://blog.csdn.net/qq_54548545/article/details/139728064且通常情况下&#xff0c;一个项目若是大量使用到分页组件&#xff0c;咱们也不可…