Python大数据分析——决策树和随机森林

news2025/1/12 5:54:50

Python大数据分析——决策树和随机森林

  • 决策树
  • 决策树节点字段的选择
    • 信息熵
      • 条件熵
      • 信息增益
      • 信息增益率
    • 基尼指数
      • 条件基尼指数
      • 基尼指数增益
    • 决策树函数
  • 随机森林
    • 函数

决策树

图中的决策树呈现自顶向下的生长过程,深色的椭圆表示树的根节点;浅色的椭圆表示树的中间节点;方框则表示树的叶节点。

对于所有的非叶节点来说,都是用来表示条件判断,而叶节点则存储最终的分类结果,例如中年分支下的叶节点(4,0)表示4位客户购买,0位客户不购买。
在这里插入图片描述

决策树节点字段的选择

信息熵

我们首先了解下信息熵

熵原本是物理学中的一个定义,后来香农将其引申到了信息论领域,用来表示信息量的大小。信息量越大(分类越不“纯净”),对应的熵值就越大,反之亦然。也就是信息量大,熵大,一个事件发生的概率小,反之亦然。信息熵的计算公式如下:
在这里插入图片描述
在实际应用中,会将概率p的值用经验概率替换,所以经验信息可以表示为:
在这里插入图片描述
举个例子:以产品是否被购买为例,假设数据集一共包含14个样本,其中购买的用户有9个,没有购买的用户有5个,所以对于是否购买这个事件来说,它的经验信息为:
在这里插入图片描述

条件熵

判断在某个条件下的信息熵为条件熵
在这里插入图片描述
在这里插入图片描述
比如:
在这里插入图片描述

信息增益

对于已知的事件A来说,事件D的信息增益就是D的信息熵与A事件下D的条件熵之差,事件A对事件D的影响越大,条件熵H(D|A)就会越小(在事件A的影响下,事件D被划分得越“纯净”),体现在信息增益上就是差值越大,进而说明事件D的信息熵下降得越多。
所以,在根节点或中间节点的变量选择过程中,就是挑选出各自变量下因变量的信息增益最大的。
在这里插入图片描述
其中:D是事件Y的所有可能

信息增益率

决策树中的ID3算法使用信息增益指标实现根节点或中间节点的字段选择,但是该指标存在一个非常明显的缺点,即信息增益会偏向于取值较多的字段。
为了克服信息增益指标的缺点,提出了信息增益率的概念,"它的思想很简单,就是在信息增益的基础上进行相应的惩罚。信息增益率的公式可以表示为:
在这里插入图片描述
其中,HA为事件A的信息熵。事件A的取值越多,GainA(D)可能越大,但同时HA也会越大,这样以商的形式就实现了GainA(D)的惩罚。

基尼指数

决策树中的C4.5算法使用信息增益率指标实现根节点或中间节点的字段选择,但该算法与ID3算法致,都只能针对离散型因变量进行分类,对于连续型的因变量就显得束手无策了。
为了能够让决策树预测连续型的因变量,Breiman等人在1984年提出了CART算法,该算法也称为分类回归树,它所使用的字段选择指标是基尼指数。
在这里插入图片描述

条件基尼指数

在这里插入图片描述

基尼指数增益

与信息增益类似,还需要考虑自变量对因变量的影响程度,即因变量的基尼指数下降速度的快慢,下降得越快,自变量对因变量的影响就越强。下降速度的快慢可用下方式子衡量:
在这里插入图片描述

决策树函数

DecisionTreeClassifier(criterion=‘gini’, splitter=‘best’,max_depth=None,min_samples split=2,min_samples_leaf=1,max_leaf_nodes=None,class_weight=None)
criterion: 用于指定选择节点字段的评价指标,对于分类决策树,默认为’gini’,表示采用基尼指数选择节点的最佳分割字段;对于回归决策树,默认为’mse’,表示使用均方误差选择节点的最佳分割字段
splitter: 用于指定节点中的分割点选择方法,默认为’best’,表示从所有的分割点中选择最佳分割点如果指定为’random’,则表示随机选择分割点
max_depth: 用于指定决策树的最大深度,默认为None,表示树的生长过程中对深度不做任何限制
min_samples split: 用于指定根节点或中间节点能够继续分割的最小样本量, 默认为2
min_samples leaf: 用于指定叶节点的最小样本量,默认为1
max_leaf nodes:用于指定最大的叶节点个数,默认为None,表示对叶节点个数不做任何限制
class_weight:用于指定因变量中类别之间的权重,默认为None,表示每个类别的权重都相等;如果,则表示类别权重与原始样本中类别的比例成反比;还可以通过字典传递类别之间的权重为balanced差异,其形式为{class label:weight}

随机森林

利用Bootstrap抽样法,从原始数据集中生成k个数据集,并且每个数据集都含有N个观测和P个自变量。
针对每一个数据集,构造一棵CART决策树,在构建子树的过程中,并没有将所有自变量用作节点字段的选择,而是随机选择p个字段。
让每一棵决策树尽可能地充分生长,使得树中的每个节点尽可能“纯净”,即随机森林中的每一棵子树都不需要剪枝。
针对k棵CART树的随机森林,对分类问题利用投票法,将最高得票的类别用于最终的判断结果;对回归问题利用均值法,将其用作预测样本的最终结果。
在这里插入图片描述
生成100个树,每个数据集为一个树

函数

RandomForestClassifier(n_estimators=10,criterion=‘gini’, max_depth=None,min_samples_split=2, min_samples_leaf=1,max_leaf_nodes=None, bootstrap=True, class_weight=None)
n_estimators: 用于指定随机森林所包含的决策树个数
criterion: 用于指定每棵决策树节点的分割字段所使用的度量标准,用于分类的随机森林,默认的criterion值为’gini’;用于回归的随机森林,默认的criterion值为’mse’
max_depth: 用于指定每棵决策树的最大深度,默认不限制树的生长深度
min _samples_split: 用于指定每棵决策树根节点或中间节点能够继续分割的最小样本量, 默认为2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1911834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

降压转换器-从分立电路到完全集成的模块

降压转换器已存在了一个世纪,是当今电子电路中不可或缺的一部分。本文将讲述一个原始分立式器件如何演变成可以处理数百瓦功率的微型高集成器件。 降压转换器是将输入电压转换为较低的输出电压,基本原理如图 1所示。最初,开关 SW1 关断&…

设计模式之Facade设计模式

Facade设计模式,也称为外观模式,是一种结构型设计模式,它主要用于为子系统中的一组接口提供一个统一的高层接口,从而使得子系统更加容易使用。以下是关于Facade设计模式的详细介绍: 一、定义 Facade模式为多个复杂的…

数据库MySQL---基础篇

存储和管理数据的仓库 MySQL概述 数据库相关概念 数据库(DataBase)---数据存储的仓库,数据是有组织的进行存储 数据库管理系统(DBMS)-----操纵和管理数据库的大型软件 SQL----操作关系型数据库的编程语言&#xff…

C++之goto陈述

关键字 goto用于控制程式执行的顺序&#xff0c;使程式直接跳到指定标签(lable) 的地方继续执行。 形式如下 标签可以是任意的识别字&#xff0c;后面接一个冒号。 举例如下 #include <iostream>int main() {goto label_one;label_one: {std::cout << "Lab…

0302GPIO外设输入功能

GPIO外设输入功能 输入部分硬件电路按键简介传感器模块简介按键和传感器模块的硬件电路 C语言的学习C语言数据类型宏定义typedef结构体枚举C语言知识总结 按键控制LED灯&光敏传感器蜂鸣器GPIO总结GPIO使用方法总结模块化编程的方法&#xff1a; 两个程序&#xff1a;按键控…

Error:sql: expected 1 arguments, got 2

一 背景 在测试一个API接口时&#xff0c;看到日志里面突然抛出一个错误&#xff1a;Error:sql: expected 1 arguments, got 2 看了下&#xff0c;对应的表里面是有相关数据的&#xff0c;sql语句放在mysql里面执行也是没问题&#xff01;那奇了怪了&#xff0c;为啥会产生这样…

【MindSpore学习打卡】应用实践-热门LLM及其他AI应用-使用MindSpore实现K近邻算法对红酒数据集进行聚类分析

在机器学习领域&#xff0c;K近邻算法&#xff08;K-Nearest Neighbor, KNN&#xff09;是最基础且常用的算法之一。无论是分类任务还是回归任务&#xff0c;KNN都能通过简单直观的方式实现高效的预测。在这篇博客中&#xff0c;我们将基于MindSpore框架&#xff0c;使用KNN算法…

alibabacloud学习笔记11

讲解什么是配置中心及使用前后的好处 讲解Nacos作为配置中心面板介绍 官方文档 Nacos config alibaba/spring-cloud-alibaba Wiki GitHub 加入依赖&#xff1a; 订单服务和视频服务也加上这个依赖。 讲解Nacos作为配置中心实战 订单服务添加配置。 我们注释掉之前的配置。 …

Java项目:基于SSM框架实现的农家乐信息管理平台含前后台【ssm+B/S架构+源码+数据库+答辩PPT+开题报告+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的农家乐信息管理平台 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功…

Mybatis Plus 3.X版本的insert填充自增id的IdType.ID_WORKER策略源码分析

总结/朱季谦 某天同事突然问我&#xff0c;你知道Mybatis Plus的insert方法&#xff0c;插入数据后自增id是如何自增的吗&#xff1f; 我愣了一下&#xff0c;脑海里只想到&#xff0c;当在POJO类的id设置一个自增策略后&#xff0c;例如TableId(value "id",type …

Linux多进程和多线程(八)多线程

多线程 线程定义线程与进程线程资源 线程相关命令 pidstat 命令 top 命令ps 命令常见的并发方案 1. 多进程模式2. 多线程模式 创建线程 1. pthread_create() 示例:创建一个线程 2. pthread_exit() 退出线程3. pthread_join() 等待线程结束 示例: 线程分离 创建多个线程 示例 1:…

Spring Boot集成grpc快速入门demo

1.什么是GRPC&#xff1f; gRPC 是一个高性能、开源、通用的RPC框架&#xff0c;由Google推出&#xff0c;基于HTTP2协议标准设计开发&#xff0c;默认采用Protocol Buffers数据序列化协议&#xff0c;支持多种开发语言。gRPC提供了一种简单的方法来精确的定义服务&#xff0c…

VUE之旅—day3

工程化开发和脚手架Vue CLI 开发Vue的两种方式&#xff1a; 核心包创痛开发模式&#xff1a;基于html/css/js文件&#xff0c;直接引入核心包&#xff0c;开发Vue。 工程化开发模式&#xff1a;基于构建工具&#xff08;例如&#xff1a;webpack&#xff09;的环境中开发Vue。…

『大模型笔记』GraphRAG:利用复杂信息进行发现的新方法!

GraphRAG:利用复杂信息进行发现的新方法! 文章目录 一. GraphRAG:利用复杂信息进行发现的新方法!1. 将RAG应用于私人数据集2. 整个数据集的推理3. 创建LLM生成的知识图谱4. 结果指标5. 下一步二. 参考文献微软官方推文:https://www.microsoft.com/en-us/research/blog/gra…

招投标信息采集系统:让您的企业始终站在行业前沿

一、为何招投标信息如此关键&#xff1f; 在经济全球化的大背景下&#xff0c;招投标活动日益频繁&#xff0c;成为企业获取项目、拓展市场的主流方式之一。招投标信息采集&#xff0c;作为企业战略决策的前置环节&#xff0c;其重要性不言而喻。它不仅关乎企业能否第一时间发…

实时消息推送系统,写得太好了!

websocket 协议是在 http 协议上的一种补充协议&#xff0c;是 html5 的新特性&#xff0c;是一种持久化的协议。其实 websocket 和 http 关系并不是很大&#xff0c;不过都是属于应用层的协议&#xff0c;接下来我们就开始实战。 websocket 定时推送 本教程基于 springboot …

如何解决群晖Docker注册表查询失败/无法拉取镜像等问题

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 问题概述 📒📒 解决方案 📒🔖 方法一🔖 方法二🔖 方法三⚓️ 相关链接 🚓️📖 介绍 📖 在群晖(Synology)NAS设备上使用Docker时,我们可能会遇到查询Docker注册表失败,无法拉取Docker镜像的问题。这种情况…

一文理解 Treelite,Treelite 为决策树集成模型的部署和推理提供了高效、灵活的解决方案

&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、什么是 Treelite&#xff1f; Treelite 是一个专门用于将决策树集成模型高效部署到生产环境中的机器学习模型编译器&#xff0c;特别适合处理大批量数据的推理任务&#xff0c;能够显著提升推理性能…

《RWKV》论文笔记

原文出处 [2305.13048] RWKV: Reinventing RNNs for the Transformer Era (arxiv.org) 原文笔记 What RWKV(RawKuv):Reinventing RNNs for the Transformer Era 本文贡献如下&#xff1a; 提出了 RWKV 网络架构&#xff0c;结合了RNNS 和Transformer 的优点&#xff0c;同…

vscode调试教程

VSCode调试 VSCode Debuggers VSCode使用launch.json进行细粒度的控制&#xff0c;可以启动程序或将其附加到复杂的调试场景中 打开Run and Debug视图Ctrl Shift D 点击create a launch.json file&#xff0c;选择C(GDB/LLDB) 会在工作目录自动创建.vscode/launch.json文…