微软清华提出全新预训练范式,指令预训练让8B模型实力暴涨!实力碾压70B模型

news2025/1/12 9:03:15

现在的大模型训练通常会包括两个阶段:

一是无监督的预训练,即通过因果语言建模预测下一个token生成的概率。该方法无需标注数据,这意味着可以利用大规模的数据学习到语言的通用特征和模式。

二是指令微调,即通过自然语言指令构建的多样任务对预训练模型进行微调,显著增强了任务泛化能力。

最近,微软与清华提出了指令预训练(Instruction Pre-Training)的新方法,该方法在第一阶段引入指令—响应对的数据,采用监督多任务学习来探索预训练语言模型的新途径。

指令预训练使Llama3-8B模型在部分领域上的表现甚至超越了Llama3-70B模型。

图片

论文标题:
Instruction Pre-Training: Language Models are Supervised Multitask Learners

论文链接
https://arxiv.org/pdf/2406.14491

github链接
https://github.com/microsoft/LMOps

可能有同学会担心指令—响应对的数据从何而来,人工构建的话耗时耗力,如果是合成数据,其质量又如何保障?

为了解决以上问题,作者通过将现有的数据集转换为固定格式,然后微调7B大小的开源模型,构建了200M高质量多样化的指令-响应对,覆盖40多个任务类别。

另外,通过与常规的预训练方法相比,指令预训练不仅提高了模型性能,还有望强化指令微调,减少微调步数。在持续的预训练中,指令预训练使Llama3-8B模型在部分领域上的表现甚至超越了Llama3-70B模型。

指令预训练

与传统的直接在原始语料库上进行预训练不同,指令预训练( Instruction Pre-Training)通过使用指令合成器生成一组指令-响应对(instruction-response pairs)来增强每个原始文本,然后利用增强后的语料库对语言模型进行预训练。

图片

这些增强的指令-响应对是基于大量原始语料库的内容合成的,确保了高知识覆盖率和正确性。因此指令预训练的核心就是如何构建一个指令合成器,下文将详细叙述这个过程。

指令合成器

简单来说,指令合成器的开发,需要先将广泛的现有数据集转换们需要的格式:每个示例包含原始文本以及一组指令-响应对。使用这些数据,然后微调语言模型,以基于相应原始文本生成指令-响应对。

与现有使用GPT-3等大型或专有模型合成数据不同,本文选用7B的开源模型,节省成本但性能不输大模型。合成的数据具有高度多样性,使得指令合成器能够泛化到未见过的数据。

数据收集

从基于上下文的任务完成数据集中抽样并格式化数据。每个数据样本的上下文作为原始文本,下游任务作为指示-响应对,模版如下图所示。这些上下文跨越各种领域,如百科全书、社交媒体和学术测试 ,任务包括共性推理和情感分析等各种领域。

图片

微调

使用few-shot的方式微调指令合成器,如下图所示,一个样本包含一段原始文本以及它的指令响应对,多个样本序列相互连接。所有示例均从同一数据集中抽样,保障不同指示-响应对集合中的模式的一致性。

图片

推理

在推理时,每一轮都将之前轮次的文本、指示-响应对前置到当前文本。这使得指示合成器能够基于先前示例生成新的指示-响应对。

语言模型预训练

在收集合成的指令-回应对之后,使用多样的模板使指令格 式多样化,并将每个原始文本与其指令-回应对连接起来。通过连接来自M轮的文本和指令对,为后续的预训练创建了一个M次示例。

除了预训练数据外, 指令预训练保持所有其他预训练设置与一般预训练相同,同样使用下一个Token预测目标进行 训练,并在所有Token上计算损失。

作者同样进行了从零开始的常规预训练和领域自适应的持续预训练(Domain-Adaptive Continual Pre-Training),以验证在不同预训练场景中的有效性。

实验结果

指令预训练 VS 常规预训练

指令预训练表现出强大的泛化性

作者在不同规模的模型上使用不同的数据进行与训练,结果如下表所示。Vanilla PT代表常规的预训练方式,Instrcut PT是本文所提出的方法,Mix PT将一般预训练使用的原始语料库与指令合成器的微调数据混合在一起。

图片

与Vanilla PT相比,混合了指令合成器的微调数据的Mix PT有所提升。而Instrcut PT则在大多数评估数据集上实现了更好的性能。另外指令合成器的微调数据中不包含任何评估数据集,但却在未见过的数据集上表现良好,展示出强大的泛化性。

指令预训练在不同模型规模上具有一致的数据效率。

另外,当将Instrcut PT与其他开源模型比较时,Instrcut PT以较少的参数量与token花费得到了不错的性能。如下表所示:

图片

使用100B个tokens,500M参数的Instrcut PT,达到了Pythia-1B使用300B tokens的性能,而使用100B个tokens,1.3B参数的Instrcut PT达到了BLOOM-3B使用341B个tokens训练的性能。

Instrcut PT有望减少微调的步骤数量。

通过对比Vanilla PT与Instrcut PT在zero-shot 和 few-shot下的表现,如下图所示,随着步骤增长,Instrcut PT稳步提升。

图片

作者认为,指令预训练与指令调优阶段的任务更紧密对齐,有助于在预训练和微调之间实现顺畅的过渡。这种紧密的对齐使得模型能够更高效地学习下游任务,从而有望显著减少进一步微调的步骤数量。

指令预训练 VS 领域自适应持续预训练

所谓领域自适应持续预训练就是使用领域语料(本文中使用生物医学领域和金融领域)对语言模型进一步逐步预训以使其适应一系列领域。

这里作者展示了经由Vanilla PT持续预训练后,以及经由Instruct PT持续预训练后的效果。还展示了Llama3-70B的表现作为参考,如下表所示:

图片

Instruct PT在几乎所有领域特定任务上始终表现优于Vanilla PT。使用Instruct PT进行持续预训练大大提升了 Llama3-8B 的领域特定表现,达到与甚至超过 Llama3-70B 的水平

在金融 NER 基准测试中,Instruct PT表现不及 Vanilla PT,表现出相当大的方差,甚至Llama3-70B 不如 Llama3-8B,表明此基准测试可能不够可靠。

评估指令合成器生成质量

在本文中起关键作用的是前文介绍的指令合成器,能够生成任何原始文本的指令-响应对。因此,作者在已见数据集和未见数据集上评估了指令合成器的性能。

响应准确性

为了评估生成响应的准确性,作者给定原始文本和任务指令,使指令合成器生成一个响应,然后计算生成的响应与黄金响应之间的 F1 相似度以评估响应准确性。

由于该指令合成器是从基础 Mistral-7B 模型微调而来的。为了比较,作者对比基础模型的结果。如下表所示:

图片

可以看到,微调的合成器在已知和未知数据集上明显优于基础模型。

指令-响应对质量

该评测是给定原始文本,指令合成器生成一组指令-响应对。与基础模型相比,微调的合成器在零样本、少样本、已知和未知数据集这四个维度上显著优于基准。

图片

合成的指令-响应对提高LM的泛化性

这给定里将测试原始文本、合成对和测试指令串联在一起的提示,LM 生成一个响应。然后通过在提示中使用或者不使用合成的指令-响应对分别衡量LM的性能,结果如下图所示:

图片

在已知和未知数据集上,本文加入合成的指令-响应对的方法持续增强了 LM 在测试任务上的表现,超过了所有基线。即使是没有见过的数据集,也能带来很大的帮助。

合成的指令-响应对的多样性

作者从语料库中抽取了500个增强的指令文本,并使用GPT-4示评估合成的指令是否与原始文本的上下文相关(上下文相关性),以及基于指令和上下文回复是否准确(回复准确性)。

图片

从上表中,可以看到指令合成器生成涵盖 49 个不同任务类别的指令-响应对,其中超过 85% 与上下文相关,响应准确率达到70%。

作者进一步将任务类别分为 9 个通用任务场景。下图显示了通用预训练中指令增强语料库中每个任务场景的百分比。表明本文的合成数据涵盖了所有通用任务场景,展示了高度多样化。

图片

结论

本文提出的指令预训练(Instruction Pre-Training)方法展示了监督多任务学习的巨大潜力。通过微调指令合成器生成高质量多样化的指令-响应对来增强语料库,然后在增强的语料库上对LMs进行预训练,该方法显著提高了模型在多种任务上的泛化能力。此外,在持续预训练中,指令预训练使得小模型在特定领域的表现能够媲美甚至超过大模型。

希望这项工作能够激发对监督多任务预训练领域的进一步探索,有效提升LMs的通用能力。

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1911735.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

核密度估计KDE和概率密度函数PDF(深入浅出)

目录 1. 和密度估计(KDE)核密度估计的基本原理核密度估计的公式核密度估计的应用Python中的KDE实现示例代码 结果解释解释结果 总结 2. 概率密度函数(PDF)概率密度函数(PDF)是怎么工作的:用图画…

数据类型及数据块认知

西门子STEP7编程语言 梯形图(LAD) 功能块图(FBD) 语句表(STL) 其中梯形图和功能块图可以相互转换 CPU常用数据区 信号输入区 I 信号输出区 Q 程序中表现形式,IX.X/QX.X;IWX/QWX-访问的是CPU输出输入过程映像区 另一种形式IWX:P/QWX:P-访问的是信号端口地址&#xf…

idea推送到gitee 401错误

在idea上推送时遇到这样的问题,解决方法如下: 在https://的后面加上 用户名:密码 然后再提交就ok啦!

285个地级市出口产品质量及技术复杂度(2011-2021年)

出口产品质量与技术复杂度:衡量国家竞争力的关键指标 出口产品质量是衡量国内企业生产的产品在国际市场上竞争力的重要标准。它不仅要求产品符合国际标准和目标市场的法律法规,而且需要保证产品质量的稳定性和可靠性。而出口技术复杂度则进一步体现了一…

Python神经模型评估微分方程图算法

🎯要点 🎯神经网络映射关联图 | 🎯执行时间分析 | 🎯神经网络结构降维 | 🎯量化图结构边作用 | 🎯数学评估算法实现 🍪语言内容分比 🍇Python随机梯度下降算法 随机梯度下降是梯度…

nodejs安装配置详解

一、下载Node.js安装包 官网下载链接[点击跳转] 建议下载LTS版本(本教程不适用于苹果电脑) 二 、安装Node.js 2.1 下载好安装包后双击打开安装包,然后点击Next 2.2 勾选同意许可后点击Next 2.3 点击Change选择好安装路径后点击Next&#x…

使用微pe装系统

本文仅作为记录,不作为教程。 今天心血来潮想下点游戏玩玩,一看之前分的200gc盘已经红了,再加上大学之后这个笔记本已经用得很少了,于是打算重装电脑。 参考: 微PE辅助安装_哔哩哔哩_bilibil… 1.下载微pe和win10系统到U盘 我这…

18.按键消抖模块设计(使用状态机,独热码编码)

(1)设计意义:按键消抖主要针对的时机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子就断开。因而在闭合以及断开的瞬…

Java PKI Programmer‘s Guide

一、PKI程序员指南概述 PKI Programmer’s Guide Overview Java认证路径API由一系列类和接口组成,用于创建、构建和验证认证路径。这些路径也被称作认证链。实现可以通过基于提供者的接口插入。 这个API基于密码服务提供者架构,这在《Java密码架构参考指…

Windows C++ vs2022环境中下载、安装和使用osmesa

第一步:安装 MinGW-w64 请参考这篇文章进行安装: 在Windows中安装MinGW-w64最新版本 第二步:安装DirectX SDK 请参考这篇文章进行安装: 下载安装Microsoft DirectX SDK(June 2010) 第三步:安装Windows SDK 请参考这篇…

数据仓库哈哈

数据仓库 基本概念数据库(database)和数据仓库(Data Warehouse)的异同 整体架构分层架构方法论ER模型(建模理论)维度模型 何为分层第一层:数据源(ODS ER模型)设计要点日志…

WSL2编译使用6.6版本内核

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、有什么变化二、下载6.6内核三、开始编译1.安装环境2.开始编译 四、使用1.杀死虚拟机2.防止内核文件3.修改配置文件 总结 前言 最近出了一件不大不小的事&a…

C++基础知识:数组,数组是什么,数组的特点是什么?一维数组的三种定义方式,以及代码案例

1.数组的定义: 数组,就是一个集合,里面存放了相同类型的数据元素 2.数组的特点: 特点1:数组中的每个数据元素都是相同的数据类型 特点2:数组是由连续的内存位置组成的 3. 一维数组定义方式 维数组定义的三种方式: 1.数据类型 …

【atcoder】习题——位元枚举

题意:求i&M的popcount的和,i属于0……N 主要思路还是变加为乘。 举个例子N22,即10110 假设M的第3位是1,分析N中: 00110 00111 00100 00101 发现其实等价于 0010 0011 0000 0001 也就是左边第4位和第5…

AE-关键帧

目录 关键帧操作步骤(以位置变化为例) 1.确定动画起点 2.设置起点的位置属性 3.为起点打上关键帧 4.确定动画终点 5.设置终点的位置属性 改变动画速度 1.选中所有关键帧 2.拖拽 时间反向关键帧 1.选中要反向的关键帧 2.使用时间反向关键帧 …

二叉树超详细解析

二叉树 目录 二叉树一级目录二级目录三级目录 1.树的介绍1.1树的定义1.2树的基本术语1.3相关性质 2.二叉树介绍2.1定义2.2 性质 3.二叉树的种类3.1 满二叉树3.2完全二叉树3.3 二叉查找树特点:二叉查找树的节点包含的基本信息: 3.4 平衡二叉树 4.二叉树的…

imx6ull/linux应用编程学习(15) 移植MQTT客户端库

1. 准备开发环境 确保你的Ubuntu系统已经安装了必要的工具和依赖项。打开终端并运行以下命令: sudo apt update sudo apt install build-essential cmake git2. 获取MQTT库 git clone https://github.com/eclipse/paho.mqtt.c.git cd paho.mqtt.c3. 编译MQTT库 mk…

【前端速通系列|第二篇】Vue3前置知识

文章目录 1.前言2.包管理工具npm2.1下载node.js2.2配置 npm 镜像源2.3 npm 常用命令 3.Vite构建工具4.Vue3组件化5.Vue3运行原理 1.前言 本系列文章旨在帮助大家快速上手前端开发。 2.包管理工具npm npm 是 node.js中进行 包管理 的工具. 类似于Java中的Maven。 2.1下载nod…

K8S 上部署大数据相关组件

文章目录 一、前言二、Redis2.1 安装方式一:2.2 安装方式二: 一、前言 Artifact Hub 是一个专注于云原生应用的集中式搜索和发布平台。它旨在简化开发者在 CNCF(Cloud Native Computing Foundation)项目中寻找、安装和分享包与配置…

计算理论复习

1.Turing Machine 确定性图灵机 图灵机有很多不同的定义,这里选取其中一种,其它定义下的图灵机往往与下面这种定义的图灵机计算能力等价。 图灵机是一个在一条可双向无限延伸且被划分为若干格子的纸带上进行操作的机器,其有内部状态&#…