jvm宏观上类的加载机制整体和微观上通过类加载器进行加载的过程

news2024/11/20 21:17:48

说到一个词“类的加载”其实含有歧义,因为在jvm中可以说有一个宏观的,即整体上的类的加载,还有一个微观上的加载,也就是狭隘的通过类加载器的加载class文件的过程,这里介绍这两种“类的加载”。

类的整体加载过程(类加载机制)

Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称作虚拟机的类加载机制。与那些在编译时需要进行连接的语言不同,在Java语言里面,类型的加载、连接和初始化过程都是在程序运行期间完成的,这种策略让Java语言进行提前编译会面临额外的困难,也会让类加载时稍微增加一些性能开销,但是却为Java应用提供了极高的扩展性和灵活性,Java天生可以动态扩展的语言特性就是依赖运行期动态加载和动态连接这个特点实现的。例如,编写一个面向接口的应用程序,可以等到运行时再指定其实际的实现类,用户可以通过Java预置的或自定义类加载器,让某个本地的应用程序在运行时从网络或其他地方上加载一个二进制流作为其程序代码的一部分。这种动态组装应用的方式目前已广泛应用于Java程序之中,从最基础的Applet、JSP到相对复杂的OSGi技术,都依赖着Java语言运行期类加载才得以诞生。

在这里插入图片描述
一个class文件怎么从硬盘上到内存中:

一个类型从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期将会经历加载(Loading)、验证(Verification)、准备(Preparation)、解析(Resolution)、初始化(Initialization)、使用(Using)和卸载(Unloading)七个阶段,其中验证、准备、解析三个部分统称为连接(Linking)
Verification是校验装进来的class文件是不是符合class文件的标准,假如你装进来的不是这个CAFE BA BE,在这步骤就被拒掉了。
Preparation是把class文件静态变量赋默认值,不是赋初始值,比如你static int i = 8,注意在这个步骤8并不是在把i值赋成8,而是先赋成0
Resolution是把class文件常量池里面用到的符号引用,要给它转换为直接内存地址,直接可以访问到的内容。
Initlalizing意思是静态变量这时候赋值才成为初始值

加载阶段

加载阶段:

加载是类加载过程中的一个阶段,这个阶段会在内存中生成一个代表这个类的java.lang.Class 对象,作为方法区这个类的各种数据的入口。注意这里不一定非得要从一个Class 文件获取,这里既可以从ZIP 包中读取(比如从jar 包和war 包中读取),也可以在运行时计算生成(动态代理),也可以由其它文件生成(比如将JSP 文件转换成对应的Class 类)。

验证阶段

验证阶段目的在于确保Class文件的字节流中包含信息符合当前虚拟机要求,不会危害虚拟机自身安全。主要完成以下检测动作:
文件格式验证:
这一阶段可能包括下面这些验证点:
·是否以魔数0xCAFEBABE开头。
·主、次版本号是否在当前Java虚拟机接受范围之内。
·常量池的常量中是否有不被支持的常量类型(检查常量tag标志)。
·指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量。

元数据验证
主要是语义校验,保证不存在不符合Java语言规范的元数据信息,如:没有父类,继承了final类,接口的非抽象类实现没有完整实现方法等。
这个阶段可能包括的验证点如下:
·这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)。
·这个类的父类是否继承了不允许被继承的类(被final修饰的类)。
·如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。
·类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等)。

字节码验证
第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体(Class文件中的Code属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为,例如: ·保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似于“在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中”这样的情况。 ·保证任何跳转指令都不会跳转到方法体以外的字节码指令上。 ·保证方法体中的类型转换总是有效的,例如可以把一个子类对象赋值给父类数据类型,这是安全的,但是把父类对象赋值给子类数据类型,甚至把对象赋值给与它毫无继承关系、完全不相干的一个数据类型,则是危险和不合法的

符号引用验证
最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。本阶段通常需要校验下列内容:

·符号引用中通过字符串描述的全限定名是否能找到对应的类。
·在指定类中是否存在符合方法的字段描述符及简单名称所描述的方法和字段。
·符号引用中的类、字段、方法的可访问性(private、protected、public、)是否可被当前类访问。

准备阶段

准备:当完成字节码文件的校验之后,JVM 便会开始为类变量分配内存并初始化。这里需要注意在准备阶段,JVM 只会为「类变量」分配内存,而不会为「类成员变量」分配内存。
例如下面的代码在准备阶段,只会为 factor 属性分配内存,而不会为 website 属性分配内存。

public static int factor = 3;
public String website = "ww";
  • **初始化的类型。**在准备阶段,JVM 会为类变量分配内存,并为其初始化。但是这里的初始化指的是为变量赋予 Java 语言中该数据类型的零值,而不是用户代码里初始化的值。

「类成员变量」的内存分配需要等到初始化阶段才开始,而且在准备阶段,JVM 会为变量赋予 Java 语言中该数据类型的零值,而不是用户代码里初始化的值。不过被 final 修饰的类变量在准备阶段就会被赋予想要的值。
例如下面的代码在准备阶段之后,sector 的值将是 0,而不是 3。

public static int sector = 3;

**但如果一个变量是常量(被 static final 修饰)的话,那么在准备阶段,属性便会被赋予用户希望的值。**例如下面的代码在准备阶段之后,number 的值将是 3,而不是 0。

public static final int number = 3;

之所以 static final 会直接被赋值,而 static 变量会被赋予零值。其实我们稍微思考一下就能想明白了。

两个语句的区别是一个有 final 关键字修饰,另外一个没有。而 final 关键字在 Java 中代表不可改变的意思,意思就是说 number 的值一旦赋值就不会在改变了。既然一旦赋值就不会再改变,那么就必须一开始就给其赋予用户想要的值,因此被 final 修饰的类变量在准备阶段就会被赋予想要的值。而没有被 final 修饰的类变量,其可能在初始化阶段或者运行阶段发生变化,所以就没有必要在准备阶段对它赋予用户想要的值。

解析阶段

当通过准备阶段之后,JVM 针对类或接口、字段、类方法、接口方法、方法类型、方法句柄和调用点限定符 7 类引用进行解析。这个阶段的主要任务是将其在常量池中的符号引用替换成直接其在内存中的直接引用。

其实这个阶段对于我们来说也是几乎透明的,了解一下就好。

初始化(重点)

关于在什么情况下需要开始类加载过程的第一个阶段“加载”,《Java虚拟机规范》中并没有进行强制约束,这点可以交给虚拟机的具体实现来自由把握。但是对于初始化阶段,《Java虚拟机规范》则是严格规定了有且只有六种情况必须立即对类进行“初始化”(而加载、验证、准备自然需要在此之前开始):
1)遇到new、getstatic、putstatic或invokestatic这四条字节码指令时,如果类型没有进行过初始化,则需要先触发其初始化阶段。能够生成这四条指令的典型Java代码场景有:
·使用new关键字实例化对象的时候。
·读取或设置一个类型的静态字段(被final修饰、已在编译期把结果放入常量池的静态字段除外)的时候。
·调用一个类型的静态方法的时候。
2)使用java.lang.reflect包的方法对类型进行反射调用的时候,如果类型没有进行过初始化,则需要先触发其初始化。
3)当初始化类的时候,如果发现其父类还没有进行过初始化,则需要先触发其父类的初始化。
4)当虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。 5)当使用JDK 7新加入的动态语言支持时,如果一个java.lang.invoke.MethodHandle实例最后的解析结果为REF_getStatic、REF_putStatic、REF_invokeStatic、REF_newInvokeSpecial四种类型的方法句柄,并且这个方法句柄对应的类没有进行过初始化,则需要先触发其初始化。
6)当一个接口中定义了JDK 8新加入的默认方法(被default关键字修饰的接口方法)时,如果有这个接口的实现类发生了初始化,那该接口要在其之前被初始化。



/**
 * 被动使用类字段演示:
 * 通过数组定义来引用类,不会触发此类的初始化
 **/
public class NotInitialization {

    public static void main(String[] args) {
        SuperClass[] sca = new SuperClass[10];
    }

}

到了初始化阶段,用户定义的 Java 程序代码才真正开始执行。在这个阶段,JVM 会根据语句执行顺序对类对象进行初始化,虚拟机启动时,用户需要指定一个要执行的主类(包含main()方法的那个类),虚拟机会先初始化这个主类。进行准备阶段时,变量已经赋过一次系统要求的初始零值,而在初始化阶段就是执行类构造器<clinit>()方法的过程。<clinit>()并不是程序员在Java代码中直接编写的方法,它是Javac编译器的自动生成物, ·<clinit>()方法是由编译器自动收集类中的所有类变量的赋值动作和静态语句块(static{}块)中的语句合并产生的,编译器收集的顺序是由语句在源文件中出现的顺序决定的,静态语句块中只能访问到定义在静态语句块之前的变量,定义在它之后的变量,在前面的静态语句块可以赋值,但是不能访问,

使用

当 JVM 完成初始化阶段之后,JVM 便开始从入口方法开始执行用户的程序代码。这个阶段也只是了解一下就可以。

卸载

当用户程序代码执行完毕后,JVM 便开始销毁创建的 Class 对象,最后负责运行的 JVM 也退出内存。这个阶段也只是了解一下就可以。

类加载器加载类的过程

类加载器虽然只用于实现类的加载动作,但它在Java程序中起到的作用却远超类加载阶段。对于任意一个类,都必须由加载它的类加载器和这个类本身一起共同确立其在Java虚拟机中的唯一性,每一个类加载器,都拥有一个独立的类名称空间。这句话可以表达得更通俗一些:比较两个类是否“相等”,只有在这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源于同一个Class文件,被同一个Java虚拟机加载,只要加载它们的类加载器不同,那这两个类就必定不相等。

java 是一种类型安全的语言,它有四类称为安全沙箱机制的安全机制来保证语言的安全性,这四类安全沙箱分别是:
1) 类加载体系
2) .class 文件检验器

3) 内置于Java 虚拟机(及语言)的安全特性
4) 安全管理器及Java API

java 程序中的 .java 文件编译完会生成 .class 文件,而 .class 文件就是通过被称为类加载器的ClassLoader加载的,而ClassLoder 在加载过程中会使用“双亲委派机制”来加载 .class 文件

类加载器包括:根加载器(BootStrap)、扩展加载器(Extension)、系统加载器(System)和用户自定义类加载器(java.lang.ClassLoader 的子类)。从JDK 1.2 开始,类加载过程采取了父亲委托机制(PDM)。PDM 更好的保证了Java 平台的安全性,在该机制中,JVM 自带的Bootstrap 是根加载器,其他的加载器都有且仅有一个父类加载器。类的加载首先请求父类加载器加载,父类加载器无能为力时才由其子类加载器自行加载。JVM 不会向Java 程序提供对Bootstrap 的引用。

1)当AppClassLoader 加载一个class 时,它首先不会自己去尝试加载这个类,而是把类加载请求委派给父类加载器ExtClassLoader 去完成。
2)当ExtClassLoader 加载一个class 时,它首先也不会自己去尝试加载这个类,而是把类加载请求委派给BootStrapClassLoader 去完成。
3)如果BootStrapClassLoader 加载失败(例如$JAVA_HOME/jre/lib 里未查找到该class),会使用ExtClassLoader 来尝试加载;
4)若ExtClassLoader 也加载失败,则会使用AppClassLoader 来加载,如果AppClassLoader 也加载失败,则会报出异常ClassNotFoundException。

使用双亲委派模型来组织类加载器之间的关系,一个显而易见的好处就是Java中的类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都能够保证是同一个类。反之,如果没有使用双亲委派模型,都由各个类加载器自行去加载的话,如果用户自己也编写了一个名为java.lang.Object的类,并放在程序的ClassPath中,那系统中就会出现多个不同的Object类,Java类型体系中最基础的行为也就无从保证,应用程序将会变得一片混乱。

加载完成后,Class 对象还不完整,所以此时的类还不可用。当类被加载后就进入连接阶段,这一阶段包括验证(校验字节码文件)、准备(为静态变量分配内存并设置默认的初始值)和解析(将符号引用替换为直接引用)三个步骤。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/191153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows C盘清理的正确方式,从此你告别红色烦恼

前言 伴随着电脑工作的时间越久&#xff0c;C盘常常会提示显示其内存已不足。 C盘容量不足将会极大影响系统的运行速度&#xff0c;电脑会变卡、死机。 今天&#xff0c;就给大家分享一个C盘空间清理终极解决方案&#xff1a; 1、利用Windows自己附带的磁盘清理工具 1&…

[oeasy]python0068_ 字体样式_正常_加亮_变暗_控制序列

字体样式 回忆上次内容 上次了解了一个新的转义模式 \33 逃逸控制字符 esc esc 让输出 退出标准输出流 进行控制信息的设置 可以清屏也可以设置光标输出的位置 还能做什么呢&#xff1f; 可以设置字符的颜色吗&#xff1f;&#xff1f;&#xff1f;&#x1f914; 查看细节…

BIC-2022-BDT:区块链和基于数字双胞胎的智能制造高效数据处理安全框架

摘要工业物联网具有智能连接、数据实时处理、协同监测、信息自动处理等特点&#xff0c;是物联网时代的重要组成部分之一。异构工业物联网设备对高数据速率、高可靠性、高覆盖、低延迟的要求&#xff0c;已成为信息安全领域的一大挑战。工业物联网中的智能制造产业需要多方协同…

(02)Cartographer源码无死角解析-(53) 2D后端优化→位姿图优化理论讲解、

讲解关于slam一系列文章汇总链接:史上最全slam从零开始&#xff0c;针对于本栏目讲解(02)Cartographer源码无死角解析-链接如下: (02)Cartographer源码无死角解析- (00)目录_最新无死角讲解&#xff1a;https://blog.csdn.net/weixin_43013761/article/details/127350885 文末…

【ardunio+sx1268】与【esp32+sx1268】实现不同主控单片机lora通讯

2023.21 在前文 esp32 sx1268 的 spi 驱动调通之后&#xff0c;又尝试 ardunio sx1268 驱动&#xff0c;实现不同主控对于lora模块 sx1268 的控制 文章目录1. 实验结果2.硬件描述2.1 sx12682.2 ardunio ATmega3283.接线实物图5.开发环境6.代码实现关于esp32sx1268 的驱动以及代…

爆款制作获1200w播放,B站UP主+品牌如何迈入2023

1月13日&#xff0c;bilibili 2022年度百大UP主已经揭开帷幕&#xff0c;今年延续2021年的评审标准&#xff0c;依然从专业性、影响力、创新性三个维度进行评选。来源-B站这套评审标准已经实施两年&#xff0c;早期的百大评选上榜的更多是来自知名度高、影响力广的UP主&#xf…

2.关系数据库

学习过程参考&#xff08;后续章节同&#xff09; 【公开课】数据库系统概论&#xff08;王珊老师&#xff09;&#xff08;完结&#xff09; 《数据库系统概论》思维导图 【专栏必读】数据库系统概论第五版&#xff08;王珊&#xff09;专栏学习笔记目录导航及课后习题答案详…

中国电子学会2021年09月份青少年软件编程Scratch图形化等级考试试卷三级真题(含答案)

2021-09 Scratch三级真题 分数&#xff1a;100 题数&#xff1a;38 一、单选题&#xff08;共25题&#xff0c;每题2分&#xff0c;共50分&#xff09; 1. 程序中要使用不确定的数值&#xff0c;这时要用到的是&#xff1f;&#xff08;D &#xff09; A、图章 …

Github如何使用详细介绍(保姆级教学)

前言 &#x1f4dc; “ 作者 久绊A ” 专注记录自己所整理的Java、web、sql等&#xff0c;IT技术干货、学习经验、面试资料、刷题记录&#xff0c;以及遇到的问题和解决方案&#xff0c;记录自己成长的点滴 目录 一、Github如何搜索 二、如何判断一个项目好不好呢&#xff1f…

yolov5 模型输出的格式解析

工作需要&#xff0c; 又需要对yolov5 输出的模型进行转onnx 再用c进行后续处理。 两个问题。 yolov5 的模型输出的是个啥啊&#xff1f;转成onnx后输出的和yolov5输出的处理是否一样呢&#xff1f; 关于第一个问题&#xff0c;yolov5 的模型输出的是个啥啊&#xff1f; 以前…

【Rust】14. Rust 中的函数式语言功能:迭代器与闭包

14.1 闭包&#xff1a;捕获环境的匿名函数 14.1.1 闭包会捕获其环境 14.1.2 闭包类型推断和注解 闭包并不总是要求像 fn 函数那样在参数和返回值上注明类型闭包通常很短&#xff0c;并只关联于小范围的上下文而非任意情境如果尝试对同一闭包使用不同类型则就会得到类型错误&am…

selenium自动化测试框架

一、Selenium自动化测试&#xff08;基于python&#xff09; 1、Selenium简介&#xff1a; 1.1 Selenium是一款主要用于Web应用程序自动化测试的工具集合。Selenium测试直接运行在浏览器中&#xff0c;本质是通过驱动浏览器&#xff0c;模拟浏览器的操作&#xff0c;比如跳转…

测试碎碎念(基础篇_2)

一、软件测试的基础概念1.1 需求在企业中&#xff0c;需求 主要分为 用户需求 和 软件需求~用户需求&#xff1a;可以简单理解为甲方提出的需求&#xff0c;如果没有甲方&#xff0c;那么就是终端用户使用产品时必须要完成的任务&#xff1b;用户需求 一般是比较简略的&#xf…

Flink官方例子解析:带窗口的WordCount

1. 简介 本篇介绍的是带窗口的WordCount&#xff0c;使用窗口函数countWindow。 countWindow是一种计数窗口&#xff0c;有固定窗口和滑动窗口两种用法。 1.1 固定窗口 countWindow(windowSize) , windowSize指的是窗口大小。 例如countWindow(5)&#xff0c; 说明一个窗口可…

零基础机器学习做游戏辅助第七课--模型的保存与加载

一、保存模型 当我们训练好模型后将它保存下来,这样下次使用时就可以直接加载模型进行工作了。 常见的保存模型有三种: 只保存权重文件:model.save_weights(num_weights) 当我们使用save_weights保存权重文件时,没有指定后缀名,则会保存三个文件在指定目录下

linux 下ARC的中断机制

linux 下ARC的中断机制 一、Idu 中断控制器初始化 Idu 是arc 处理器内部中断控制模块&#xff0c; 类似于arm 内部的gic 中断控制模块 首先&#xff0c;Idu中断控制器在初始化时, 会解析DTS信息中定义了几个idu控制器&#xff0c;每个Idu控制器注册一个struct irq_domain数据…

嵌入式Linux系统开发笔记(十三)

U-Boot烧写验证测试 正点原子专门编写了一个软件来将编译出来的.bin 文件烧写到 SD 卡中&#xff0c;这个软件叫做“imxdownload” 【1】将 imxdownload 拷贝到工程根目录下 【2】给予 imxdownload 可执行权限 我们直接将软件 imxdownload 从 Windows 下复制到 Ubuntu 中以…

【干货】Windows下cmd中cd命令的使用方法

【干货】Windows下cmd中cd命令的使用方法什么是cd命令cd命令的使用打开cmdcd命令的常用方法进入某个盘进入某个目录返回上一级目录返回至当前工作目录下的根目录参考什么是cd命令 此处介绍两个概念&#xff1a; cmd&#xff1a;命令提示符cd&#xff1a;全称change directory…

model.train()与model.val()

一、问题描述 需要将mmpose框架下训练的模型单独保存出来&#xff0c;做后续处理。用torch.save()直接保存模型mmpose_model.pt&#xff0c;然后重新搭建模型&#xff0c;把保存的模型参数加载进去&#xff0c;得到scratch_model.pt使用scratch_model.pt进行推理&#xff0c;与…

基于Jmeter的百万级tps性能测试实践

【CSDN 编者按】如何对系统的承载能力和响应时间做出准确的评估&#xff0c;为资源的合理配置及优化提供依据&#xff0c;性能测试就成了必不可少的测试手段&#xff0c;本文会给读者推荐一款业界占有率最高的一款性能测试工具——Jmeter。 本文作者朱凯是环信测试主管&#x…