关于string的‘\0‘与string,vector构造特点加部分特别知识点的讨论

news2024/9/24 5:28:34

目录

前言:

问题一:关于string的''\0''问题讨论

问题二:C++标准库中的string内存是分配在堆上面吗?

问题三:string与vector的capacity大小设计的特点

问题四:string的流提取问题

问题五:迭代器失效

 问题六:Vector 最大 最小值 索引 位置

前言:

前几篇文章我们已经介绍完了string,vector,list的使用与string的使用原理,但是仅仅知道这些对于我们日常使用来说已经够了,但是在我们日常使用的时候,不免会有报错与相关的疑惑,那么这里我介绍几个我认为有问题的地方,后续有问题的话,还会继续补充。

问题一:关于string的''\0''问题讨论

之前在某篇文章中看到,C语言字符串是以'\0'结尾的,但是C++string类型的字符串并不是以'\0'结尾。话不多说,直接放代码(vsX86环境):

#include<iostream>
#include<string>
using namespace std;
int main()
{
	string b("abc");
	cout << b.capacity() << endl;
	cout << b.size() << endl;

	if (b[3] == '\0')
		cout << "yes" << endl;
	else
		cout << "no" << endl;
	return 0;
}

运行结果:

.

可以看到我们创建的这个string,他的容器大小为15,这个string存储大小为3,但是我们却可以通过越界访问  b[3]   ,并且通过验证字符串的结尾就是'\0'。此时我的内心是疑惑的,心想"abc"是C语言风格的字符串给b构造,肯定会把"abc"后面影藏的'\0'给构造进去,如果不会这样就会在迭代器里面不会遇见结束表示符。那么至于这里的结尾的最后一个'\0',从结果来说是大小size不计算的,所以大小size是3。

但是我们又尝试别的构造的话又会尝试别的疑惑,比如这个代码:

#include<iostream>
#include<string>
using namespace std;
int main()
{
	string b("abcd",3);//这种构造方法是通过字符串abcd,然后只取前3个字符进行构造string
	//但是这个字符串存放的其实是 abcd\0
	cout << b.capacity() << endl;
	cout << b.size() << endl;

	if (b[3] == '\0')
		cout << "yes" << endl;
	else
		cout << "no" << endl;
	return 0;
}

结果跟上面一模一样。此刻我又想,构造函数会在末尾自动添加一个'\0',并且size和capacity函数都不计算'\0'的。

但是我们一开始是假设他跟c语言的风格相似的会把abc后面的'\0'会自动添加上,但是我们这个代码是只取了abcd\0这个字符串的前三个,没有'\0'啊~!

所以此刻,我肯定是矛盾的!!因为最开始说string字符串是不以'\0'结尾的,但是测试下来,确实是以'\0'结尾的。

哎呀~为什么呢?经过查阅资料后,才得知了其中的奥妙,奥妙如下:

std::string:标准中未明确规定需要\0作为字符串结尾。编译器在实现时既可以在结尾加\0,也可以不加。(因编译器不同,就比如vs就不用)

但是,当通过c_str()或data()(二者在 C++11 及以后是等价的)来把std::string转换为const char *时,会发现最后一个字符是\0。但是C++11,string字符串都是以'\0'结尾(这也是c++祖师爷为以前的自己的规定的优化)。



为什么C语言风格的字符串要以'\0'结尾,C++可以不要?

c语言用char*指针作为字符串时,在读取字符串时需要一个特殊字符0来标记指针的结束位置,也就是通常认为的字符串结束标记。而c++语言则是面向对象的,长度信息直接被存储在了对象的成员中,读取字符串可以直接根据这个长度来读取,所以就没必要需要结束标记了。而且结束标记也不利于读取字符串中夹杂0字符的字符串。



这里我们深入一下string的构造时的细节:

#include<iostream>
#include<string>
using namespace std;
int main()
{
	int aa = 0;
	printf("栈区的地址:%p\n", &aa);
	int* pl = new int;
	printf("堆区的地址:%p\n", pl);
	string a("abcddddddddddddddddddddddddd", 20);
	printf("a的地址:    %p\n", &a);
	printf("a[0]的地址: %p\n", &a[0]);
	a[1] = 'X';
	cout << a << endl;
	printf("a的地址:    %p\n", &a);
	printf("a[0]的地址: %p\n", &a[0]);
	string b("abc");
	printf("b的地址:    %p\n", &b);
	printf("b[0]的地址: %p\n", &b[0]);
	return 0;
}

然后通过运行的知,

用红色标注出来的是在栈上存储的,蓝色标注的时在堆上存储的,然而a,b就与指针类似,他们指向一片空间,空间内存储的对象信息, 对象地址分别是006FF6AC与006FF688,他俩的地址跟栈区地址最为接近所以该对象存储在栈区上。同理a[0]是堆区上,但是b[0]按道理也应该是在堆区上,但是为什么会是是在栈区上呢?其实这是c++的一个特殊处理,这里留下一个小疑问,(下一个问题进行解答,这里先给出为什么的答案:当string内存存储的个数在16以内(包括'\0')(后面解释为什么是16)在栈上,超过以后在堆上。)

所以,string在构造函数的时候,会在堆上开辟一块内存存放字符串,并且指向这块字符串。

(这里给大家提问一个小问题:就是为什么a先定义的,但是a对象地址为什么比b的大?)

解答:a、b是两个局部对象变量,栈是向下增长的,所以先入栈的变量地址高,即&a > &b,



问题二:C++标准库中的string内存是分配在堆上面吗?

例如我声明一个string变量。
string str;
一直不停的str.append("xxxxx");时,str会不停的增长。

我想问的是这个内存的增长,标准库中的string会把内存放置到堆上吗?

另外STL中的其他容器是否遵循相同的规则。

首先我们给出结论:16以内在栈上,超过以后在堆上。(这句话的答案省略上面的问题的前提条件:【在栈上构造的 string 对象】,如果string 是 new 出来的即在堆上构造的,当然内部的缓冲区总是在堆上的)。(vector也是如此,但是细节上略有不同)

为什么要这样做呢?

如果以动态增长来解释就是:

因为栈通常是一种具有固定大小的数据结构,如数组实现的栈在创建时会指定一个固定的容量。因此,一般情况下,栈是不支持动态增长的。 

所以是存储在堆上的。

其实还有另一个原因,那么下一个问题给出解答;

问题三:string与vector的capacity大小设计的特点

在我们设计string与vector的时候,你是否观察过他的capacity的大小呢?就比如vs里面为什么会让string与vector在其存储的内存个数小于16时会将数据存储在栈上,大于16存储在堆上呢?

这是因为string与vector第一次会在栈上开辟空间,直接开辟16个单位空间,然后挨个进行流提取,这样的话就会方便很多 ,就算要再添加数据,也不需要进行动态增长,然后这个16个单位空间就是string与vector的capacity。这里的证明可以通过调试自己查看他的capacity,当然编译器不同,可能这个首次开辟空间大小略有不同,但是不影响。

总的来说这两种解释都是解决的次要问题,他这样设计主要为了解决内存碎片的问题;如果存储的内容大小小于16,他就会先存在栈上的数组里面,当大于16,就会进行拷贝到堆上,然后栈上的数组就会进行浪费,这样达到了利用空间换时间的效果

问题四:string的流提取问题

首先如果我们自己实现string的流提取,我们会下意识认为会挨个提取输入的字符,然后挨个与s进行对接,代码试下如下: (这个代码实现的流提取是完全没有问题的)

istream& operator>>(istream& in, string& s)
{
	s.clear();
	char ch;
	ch = in.get();
	while (ch != ' ' && ch != '\n')
	{
		s += ch;
		ch = in.get();
	}
	return in;
}

但是这样写会有一个弊端,就是会多次进行扩容,俗话常说:扩容本身就是一件麻烦的时,浅拷贝就不多说了,深拷贝就更麻烦了;

所以后来就进行了优化,会先开辟一个数组,然后将流提取的字符挨个放到数组里面,当数组满的时候(或者流提取的字符提取完了)我们当让s+=数组;这样既保证了存储的数据在堆上,也避免了多次进行扩容;(需要注意的是我们要自己添加 '\0' 在string的末尾)

	istream& operator>>(istream& in, string& s)
	{
		s.clear();

		char buff[129];
		size_t i = 0;
		char ch;
		//in >> ch;
		ch = in.get();
		s.reserve(128);

		while (ch != ' ' && ch != '\n')
		{
			buff[i++] = ch;
			if (i == 128)
			{
				buff[i] = '\0';
				s += buff;
				i = 0;
			}
			//in >> ch;
			ch = in.get();
		}
		if (i != 0)
		{
			buff[i] = '\0';
			s += buff;
		}

		return in;
	}

当然这上面的两个问题都是存在于string于vector上的,因为他们存储的数据是连续的,二list作为链表就不存在这样的问题。 

问题五:迭代器失效

然而迭代器失效就不一样了,string,vector,list都存在。

在我们使用迭代器进行遍历的时候,不免会出现不正当的使用而使其迭代器失效;

失效的主要原因就是:迭代器对应的指针所指向的空间已经被销毁了,而使用一块已经被释放的空间的时候,就会造成程序崩溃(即如果继续使用已经失效的迭代器, 程序可能会崩溃)。俗话来说就是野指针了。

前面我们都在用string来进行解释,这里我们使用vector来解释,

1

就比如下面这个代码:

include<iostream>
#include<vector>
using namespace std;

int main()
{
    vector<int> v(10, 1);
    auto it = v.begin();
    v.insert(it, 0);
    (*it)++;
    return 0;
}

看起来没有问题,但是我们是先给迭代器赋值,然后进行插入,但是有一点问题就是如果插入时恰好进行扩容,并且时异地扩容,那么这个it就会变为野指针。从而达到迭代器失效的问题。

2

同样插入存在异地扩容,当然删除也存在着迭代器失效的问题;

#include<iostream>
#include<vector>
using namespace std;

int main()
{
    vector<int> v(10, 1);
    auto it = v.end() - 1;
    v.erase(it);
    (*it)++;
    return 0;
}

这时候如果再进行使用it,那么就会报错。

注意:

  1. vs 对于迭代器失效检查很严格,如使用了 erase 之后,之前的迭代器就不允许使用,只有重新给迭代器赋值,才可以继续使用
  2. Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。

 问题六:Vector 最大 最小值 索引 位置

#include<iostream>
#include<vector>
using namespace std;

int main()
{
    vector<double> v{ 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 3.0, 4.0, 5.0 };

    vector<double>::iterator biggest = max_element(begin(v), end(v));
    cout << "Max element is " << *biggest << " at position " << distance(begin(v), biggest) << endl;

    auto smallest = min_element(begin(v), end(v));
    cout << "min element is " << *smallest << " at position " << distance(begin(v), smallest) << endl;

    return 0;
}

运行结果:



到这里就完了,写作不易还请点赞;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1910508.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑文件过大删除的文件怎么恢复?别急,恢复方法在此

在数字化时代&#xff0c;电脑文件承载着我们的工作、学习和生活的重要信息。然而&#xff0c;由于文件体积的庞大或是操作失误&#xff0c;我们有时会不小心删除一些至关重要的文件。特别是当文件过大时&#xff0c;它们可能不会在回收站中留下痕迹&#xff0c;给恢复工作带来…

AI古风插画视频:成都亚恒丰创教育科技有限公司

AI古风插画视频&#xff1a;科技与传统美学的诗意交融 在数字技术的浪潮中&#xff0c;人工智能&#xff08;AI&#xff09;以其惊人的学习能力与创造力&#xff0c;正逐步渗透并重塑着艺术的边界。成都亚恒丰创教育科技有限公司其中&#xff0c;AI古风插画视频作为一股清流&a…

基于JAVA+SpringBoot+Vue+uniApp小程序的心理健康测试平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背景介绍&#xff1a; 该系统由三个核心角色…

怎么降低pdf内存,怎么降低pdf内存占用空间容量大小

在数字化时代&#xff0c;PDF文件已经成为我们日常办公和学术交流中不可或缺的一部分。然而&#xff0c;随着文件内容的丰富和质量的提高&#xff0c;PDF文件的大小也在不断增大&#xff0c;这给文件的传输和存储带来了不少困扰。本文将为你介绍几种简单有效的方法&#xff0c;…

【React】React18 Hooks 之 useContext

目录 useContext1、Provider和 useContext2、Provider 和Consumer3、Provider 嵌套4、React.createContext提供的Provider和class的contextType属性5、读、写Context&#xff08;1&#xff09;父组件修改Context&#xff08;2&#xff09;子组件修改Context 好书推荐 useContex…

72小时快速入门大语言模型

&#x1f393; 随着人工智能技术的飞速发展&#xff0c;国产芯片在大语言模型领域的应用成为创新的前沿阵地。硬蛋学堂携手行业精英&#xff0c;隆重推出全新课程——"基于国产芯片的大语言模型技术开发及应用"&#xff0c;开启智能科技的新篇章&#xff01; &#…

电阻负载柜的主要特性和参数是什么?

电阻负载柜作为重要的电力测试仪器&#xff0c;其主要特性和参数对于理解其功能和应用至关重要。以下是对电阻负载柜主要特性和参数的详细阐述&#xff1a; 主要特性 高精度测量&#xff1a;电阻负载柜通常配备高精度的电压、电流和功率因数测量系统&#xff0c;能够准确反映被…

如何创建录取查询系统

随着新学期的脚步渐近&#xff0c;老师们的日程表上又添上了密密麻麻的任务。开学前的准备工作总是让人应接不暇&#xff0c;从整理教材到布置教室&#xff0c;再到准备课程计划&#xff0c;每一项工作都需要细心与耐心。而在这些繁琐的事务中&#xff0c;如何高效地将录取结果…

哪些独立站外链策略最有效?

在当前的SEO领域中&#xff0c;独立站外链策略的效果差异很大&#xff0c;但GPB外链无疑是其中最为有效的一种。GPB外链&#xff0c;指的是通过高质量、包收录且dofollow的顶级域名独立站来获得外链&#xff0c;这种外链策略能够显著提升目标网站的整体排名数据。 关键词排名的…

Java面试八股之MySQL的redo log和undo log

MySQL的redo log和undo log 在MySQL的InnoDB存储引擎中&#xff0c;redo log和undo log是两种重要的日志&#xff0c;它们各自服务于不同的目的&#xff0c;对数据库的事务处理和恢复机制至关重要。 Redo Log&#xff08;重做日志&#xff09; 功能 redo log的主要作用是确…

[matlab]周期性信号分析

目录 信号预处理 周期性特征提取方法 频谱分析 傅里叶变换 快速傅里叶变换&#xff08;FFT&#xff09; 周期图法 Welch法 自相关分析 时频分析 基于模型的方法 时间序列分解 应用实例 提取信号的周期性特征是一个在信号处理领域广泛应用的技术&#xff0c;特别是在…

业务咨询方案 + IT落地方案建议设计

近期&#xff0c;在深入探索咨询方案的实施与落地路径时&#xff0c;体会到了一系列心得与启示&#xff0c;旨在为未来的项目实践提供可借鉴的蓝本。 咨询方案的精髓&#xff0c;在于“业务引领&#xff0c;IT支撑”的核心理念。所以方案的前提是在于业务的梳理&#xff1b; …

java Web学习笔记(一)

1. 前置学习知识 JavaScript学习笔记 CSS3学习笔记 html学习笔记 2. Tomcat介绍 前端App的运行环境&#xff1a; 服务器 --> JRE --> Tomcat --> App Tomcat目录文件介绍 bin:该目录下存放的是二进制可执行文件&#xff0c;如果是安装版&#xff0c;那么这个目…

Java-链表中倒数最后k个结点

题目&#xff1a; 输入一个长度为 n 的链表&#xff0c;设链表中的元素的值为 ai &#xff0c;返回该链表中倒数第k个节点。 如果该链表长度小于k&#xff0c;请返回一个长度为 0 的链表。 数据范围&#xff1a;0≤&#x1d45b;≤1050≤n≤105&#xff0c;0≤&#x1d44e;…

【Qt5】入门Qt开发教程,一篇文章就够了(详解含qt源码)

目录 一、Qt概述 1.1 什么是Qt 1.2 Qt的发展史 1.3 Qt的优势 1.4 Qt版本 1.5 成功案例 二、创建Qt项目 2.1 使用向导创建 2.2 一个最简单的Qt应用程序 2.2.1 main函数中 2.2.2 类头文件 2.3 .pro文件 2.4 命名规范 2.5 QtCreator常用快捷键 三、Qt按钮小程序 …

69岁的Java之父-------宣布退休了?

文章目录 高斯林的编程之路Java的诞生与Oracle的分道扬镳从Google到AWS退休生活 &#x1f389;欢迎来到Java学习路线专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT陈寒的博客&#x1f388;该系列文章专栏&#x…

基于泰坦尼克号生还数据进行 Spark 分析

基于泰坦尼克号生还数据进行 Spark 分析 在这篇博客中&#xff0c;我们将展示如何使用 Apache Spark 分析著名的泰坦尼克号数据集。通过这篇教程&#xff0c;您将学习如何处理数据、分析乘客的生还情况&#xff0c;并生成有价值的统计信息。 数据解析 • PassengerId &#…

C语言笔记30 •单链表经典算法OJ题-2.移除链表元素•

移除链表元素 1.问题 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 2.代码实现&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #include <stdlib.h&g…

私人订制:模块化沙箱

沙箱技术&#xff0c;作为一种在计算机安全领域广泛应用的技术手段&#xff0c;其核心目的是为应用程序或进程提供一个隔离的运行环境&#xff0c;以限制其对系统资源的访问和潜在的安全风险。随着技术的不断发展&#xff0c;沙箱技术逐渐实现了模块化&#xff0c;这种模块化的…

反向代理概念

反向代理概念 代理&#xff1a; 简单来说&#xff0c;找一个中间人代替我去做一件事情&#xff0c;只要他给我结果就可以。 正向代理: 隐藏客户端的身份&#xff0c;通过代理获取结果 案例1&#xff1a; 1、入职了中国j建设银行&#xff0c;做开发 2、自己电脑不能上网&#x…