[matlab]周期性信号分析

news2024/9/24 5:27:29

目录

信号预处理

周期性特征提取方法

频谱分析

傅里叶变换

快速傅里叶变换(FFT)

周期图法

Welch法

自相关分析

时频分析

基于模型的方法

时间序列分解

应用实例


提取信号的周期性特征是一个在信号处理领域广泛应用的技术,特别是在分析周期性信号(如机械振动、脑电信号等)时尤为重要。以下是一些常用的提取信号周期性特征的方法和步骤:

信号预处理

  1. 去噪:由于实际信号中常含有噪声,因此在进行周期性特征提取之前,通常需要对信号进行去噪处理,以提高信号的信噪比。去噪方法包括滤波(如低通滤波、带通滤波等)、小波变换去噪等。

  2. 去趋势:对于某些信号,特别是像脑电信号这样的非平稳信号,可能包含低频趋势成分。这些趋势成分会干扰周期性特征的提取,因此需要进行去趋势处理。

周期性特征提取方法

频谱分析

频谱分析是将信号从时间域转换到频率域,以观察信号的频率成分及其分布特征的方法。

傅里叶变换

傅里叶变换(Fourier Transform, FT)是一种数学工具,用于将信号从时间域(或空间域)转换到频率域。对于周期性信号,傅里叶变换将其分解为一系列正弦和余弦函数的和,这些正弦和余弦函数的频率是原始信号频率的整数倍(即谐波)。频谱图显示了这些正弦和余弦函数的振幅(或功率)随频率的变化,频谱图中的峰值对应于信号中的周期性成分。

快速傅里叶变换(FFT)

快速傅里叶变换(Fast Fourier Transform, FFT)是傅里叶变换的一种高效实现算法。FFT通过减少计算复杂度(从O(N2)降低到O(NlogN)),使得对大规模数据集的频谱分析变得可行。FFT在信号处理、图像处理、音频分析等众多领域都有广泛应用。通过FFT,我们可以快速得到信号的频谱图,进而分析信号的频率成分。

Fs = 1000; % 采样频率为1000Hz  
N = length(data); % 数据长度  
t = (0:N-1)/Fs; % 时间向量  
  
% FFT分析  
Y = fft(data);  
P2 = abs(Y/N);  
P1 = P2(1:N/2+1);  
P1(2:end-1) = 2*P1(2:end-1);  
  
f = Fs*(0:(N/2))/N; % 频率向量  
  
% 绘图  
figure;  
plot(f,P1)   
title('Single-Sided Amplitude Spectrum of X(t)')  
xlabel('f (Hz)')  
ylabel('|P1(f)|')

周期图法

周期图法是一种基于FFT的频谱估计方法,它直接通过计算信号FFT的幅值平方来估计信号的功率谱密度(Power Spectral Density, PSD)。然而,周期图法的一个主要缺点是频谱估计的方差较大,即估计结果不够平滑。这主要是因为周期图法没有考虑数据之间的统计特性,如相关性和随机性。因此,周期图法通常适用于对频谱估计精度要求不高的情况。

% 计算 Lomb-Scargle 周期图谱
[frequencies, power] = plomb(data, time);

% 绘制周期图谱
figure;
plot(frequencies, power);
xlabel('Frequency');
ylabel('Power');
title('Lomb-Scargle Periodogram');
grid on;

Welch法

Welch法是一种改进的频谱估计方法,旨在克服周期图法频谱估计方差大的问题。Welch法通过以下几个步骤来改进频谱估计:

  1. 数据分段:将原始数据分为多个重叠的段(segment)。
  2. 加窗:对每个段应用窗函数(如汉宁窗、海明窗等),以减少频谱泄露。
  3. FFT:对每个加窗后的段进行FFT,得到各段的频谱。
  4. 平均:将所有段的频谱进行平均,以提高频谱估计的平滑度和准确性。

Welch法通过分段加窗和平均处理,有效地降低了频谱估计的方差,提高了频谱估计的精度和平滑度。因此,Welch法在需要高精度频谱估计的场合得到了广泛应用,如通信、雷达、生物医学信号处理等领域。

% 数据 data 
Fs = 1000; % 采样频率为1000Hz  
  
% Welch法频谱估计  
[pxx,f] = pwelch(data,[],[],[],Fs);  
  
% 绘图  
figure;  
plot(f,10*log10(pxx))  
title('Welch Power Spectral Density Estimate')  
xlabel('Frequency (Hz)')  
ylabel('Power/Frequency (dB/Hz)')

自相关分析

自相关函数(Autocorrelation Function, ACF)是信号与其自身在时间轴上移动(延迟)一定量后的乘积的积分(对于连续信号)或求和(对于离散信号)。它衡量了信号在不同时间点上与其过去或未来值之间的相似度。

对于离散信号x[n],其自相关函数Rxx​[m]定义为:

R_{xx}[m]=\sum\limits_{n=-\infty}^\infty x[n]\cdot x[n+m]

其中,m是延迟量,表示信号与其自身相比的偏移量。

特性

  1. 对称性:自相关函数通常是偶函数,即Rxx​[−m]=Rxx​[m]。
  2. 最大值在原点:对于大多数信号,自相关函数在m=0时取得最大值,因为此时信号与其自身完全重合。
  3. 周期性信号的周期性:如果信号是周期性的,那么其自相关函数也将是周期性的,且周期与原信号相同。特别地,在延迟等于信号周期或其整数倍时,自相关函数会出现峰值。

% 计算自相关函数
[autocorr_values, lags] = xcorr(data, 'coeff');
% 绘制自相关函数
figure;
plot(lags, autocorr_values);
xlabel('Lag');
ylabel('Autocorrelation');
title('Autocorrelation Function');
grid on;

时频分析

定义:时频分析是同时考虑信号在时间和频率域的特征,以揭示信号的时变频率特性

常用方法

  • 短时傅里叶变换(STFT):将信号划分为多个短时窗,对每个窗内的信号进行傅里叶变换,从而得到信号随时间变化的频谱。
  • 小波变换:通过选择合适的小波基函数,对信号进行多尺度分析,以揭示信号在不同时间尺度上的频率特性。
  • 希尔伯特-黄变换(HHT):包括经验模态分解(EMD)和希尔伯特谱分析,适用于非线性、非平稳信号的分析
y=data
imf=emd(y)%进行EMD分解各个固有模态函数IMF(i)


% 绘制原始信号  
figure;  
plot(t, y); % 绘制原始信号  
title('原始信号');  
xlabel('时间 (s)'); %时间单位秒
ylabel('幅值');  
grid on; 

figure; 
for i = 1:size(imf, 2) % 遍历 imf 的列
    subplot(size(imf, 2)+1, 1, i+1);  
    plot(t, imf(:,i)); % 绘制第 i 个 IMF  
    title(['IMF ', num2str(i)]);  
    xlabel('时间 (s)');  
    ylabel('幅值');  
end

基于模型的方法

定义:通过建立信号的数学模型来提取周期性特征。

常用模型

  • 自回归模型(AR):将信号表示为自身过去值的线性组合加上噪声。
  • 滑动平均模型(MA):将信号表示为噪声的线性组合,其中噪声是过去某个时刻的噪声值。
  • 自回归滑动平均模型(ARMA):结合了AR和MA的特点,是更一般的信号模型。

时间序列分解

时间序列分解是一种将时间序列数据分解成趋势、季节性和随机成分的方法。这种方法通过去除趋势和季节性成分,使得周期性特征更加突出。具体步骤如下:

  1. 去除趋势:首先,将数据中的趋势成分去除,得到去趋势序列。这有助于更清晰地观察数据的周期性变化。
  2. 去除季节性:接着,将去趋势序列中的季节性成分去除,得到季节性序列。这一步进一步剥离了影响周期性的其他因素。
  3. 分析随机成分:最后,将季节性序列中的随机成分去除,得到随机序列。虽然这一步不直接用于周期性分析,但它有助于理解数据中不可预测的波动。

时间序列分解的结果可以用于预测未来的发展趋势,通常结合回归分析、指数平滑和ARIMA模型等方法进行。

% 定义周期(例如,季节性周期为12)
period = 12;

% 使用 MATLAB 的时序分解函数进行季节性分解
decomp = seasdecomp(data, period);

% 绘制分解结果
figure;
subplot(4, 1, 1);
plot(t, data);
title('Original Data');
xlabel('Time');
ylabel('Value');

subplot(4, 1, 2);
plot(t, decomp.Trend);
title('Trend');
xlabel('Time');
ylabel('Value');

subplot(4, 1, 3);
plot(t, decomp.Season);
title('Seasonal');
xlabel('Time');
ylabel('Value');

subplot(4, 1, 4);
plot(t, decomp.Residual);
title('Residual');
xlabel('Time');
ylabel('Value');

应用实例

  • 机械振动信号:通过频谱分析和自相关分析可以提取轴承、齿轮等旋转机械部件的故障特征,如周期性脉冲冲击信号。
  • 脑电信号:通过频谱分析和时频分析可以提取脑电信号的节律性特征,如α波、β波等,这些特征对于脑功能研究和疾病诊断具有重要意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1910495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

业务咨询方案 + IT落地方案建议设计

近期,在深入探索咨询方案的实施与落地路径时,体会到了一系列心得与启示,旨在为未来的项目实践提供可借鉴的蓝本。 咨询方案的精髓,在于“业务引领,IT支撑”的核心理念。所以方案的前提是在于业务的梳理; …

java Web学习笔记(一)

1. 前置学习知识 JavaScript学习笔记 CSS3学习笔记 html学习笔记 2. Tomcat介绍 前端App的运行环境: 服务器 --> JRE --> Tomcat --> App Tomcat目录文件介绍 bin:该目录下存放的是二进制可执行文件,如果是安装版,那么这个目…

Java-链表中倒数最后k个结点

题目: 输入一个长度为 n 的链表,设链表中的元素的值为 ai ,返回该链表中倒数第k个节点。 如果该链表长度小于k,请返回一个长度为 0 的链表。 数据范围:0≤𝑛≤1050≤n≤105,0≤𝑎…

【Qt5】入门Qt开发教程,一篇文章就够了(详解含qt源码)

目录 一、Qt概述 1.1 什么是Qt 1.2 Qt的发展史 1.3 Qt的优势 1.4 Qt版本 1.5 成功案例 二、创建Qt项目 2.1 使用向导创建 2.2 一个最简单的Qt应用程序 2.2.1 main函数中 2.2.2 类头文件 2.3 .pro文件 2.4 命名规范 2.5 QtCreator常用快捷键 三、Qt按钮小程序 …

69岁的Java之父-------宣布退休了?

文章目录 高斯林的编程之路Java的诞生与Oracle的分道扬镳从Google到AWS退休生活 🎉欢迎来到Java学习路线专栏~探索Java中的静态变量与实例变量 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页:IT陈寒的博客🎈该系列文章专栏&#x…

基于泰坦尼克号生还数据进行 Spark 分析

基于泰坦尼克号生还数据进行 Spark 分析 在这篇博客中,我们将展示如何使用 Apache Spark 分析著名的泰坦尼克号数据集。通过这篇教程,您将学习如何处理数据、分析乘客的生还情况,并生成有价值的统计信息。 数据解析 • PassengerId &#…

C语言笔记30 •单链表经典算法OJ题-2.移除链表元素•

移除链表元素 1.问题 给你一个链表的头节点 head 和一个整数 val &#xff0c;请你删除链表中所有满足 Node.val val 的节点&#xff0c;并返回 新的头节点 。 2.代码实现&#xff1a; #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #include <stdlib.h&g…

私人订制:模块化沙箱

沙箱技术&#xff0c;作为一种在计算机安全领域广泛应用的技术手段&#xff0c;其核心目的是为应用程序或进程提供一个隔离的运行环境&#xff0c;以限制其对系统资源的访问和潜在的安全风险。随着技术的不断发展&#xff0c;沙箱技术逐渐实现了模块化&#xff0c;这种模块化的…

反向代理概念

反向代理概念 代理&#xff1a; 简单来说&#xff0c;找一个中间人代替我去做一件事情&#xff0c;只要他给我结果就可以。 正向代理: 隐藏客户端的身份&#xff0c;通过代理获取结果 案例1&#xff1a; 1、入职了中国j建设银行&#xff0c;做开发 2、自己电脑不能上网&#x…

2024年全国青少年信息素养大赛复赛及决赛、我知道的有这些

周末两天2024年全国青少年信息素养大赛复赛部分赛区已经结束&#xff0c;还没有考试的同学加紧备考后面的2次&#xff0c;成绩预计&#xff08;7月13日、7月20日两次考试&#xff09;结束之后的2周左右出&#xff0c;2024年全国青少年信息素养大赛决赛将在2024年8月16日-20日在…

程序设计方法论总结

程序设计的所有原则和方法论都是追求一件事——简单——功能简单、依赖简单、修改简单、理解简单。因为只有简单才好用&#xff0c;简单才好维护。因此&#xff0c;不应该以评论艺术品的眼光来评价程序设计是否优秀&#xff0c;程序设计的艺术不在于有多复杂多深沉&#xff0c;…

Vue89-Vuex中多组件共享数据

一、需求 1-1、count组件读取persons数据 借助mapState映射。 1-2、personList组件读取sum数据

聚观早报 | 蚁天鉴2.0发布;理想汽车推送无图NOA

聚观早报每日整理最值得关注的行业重点事件&#xff0c;帮助大家及时了解最新行业动态&#xff0c;每日读报&#xff0c;就读聚观365资讯简报。 整理丨Cutie 7月8日消息 蚁天鉴2.0发布 理想汽车推送无图NOA 特斯拉推送FSD v12.4.3 iQOO Neo9s Pro配色公布 百川智能AI健康…

python--实验7 函数(1)

知识点 函数的定义与调用 函数分类&#xff1a;内置函数和自定义函数。函数定义&#xff1a;使用def关键字定义函数&#xff0c;包括函数名、参数列表和函数体。注意&#xff1a; &#xff08;1&#xff09;即使该函数不需要接收任何参数&#xff0c;也必须保留一对空的圆括号…

探索多模态预训练:MAnTiS、ActionCLIP、CPT与CoOp的Prompt技巧

上一篇博文整理了 预训练新范式&#xff08;Prompt-tuning&#xff0c;Prefix-tuning&#xff0c;P-tuning&#xff09; &#xff0c;主要是围绕NLP上的成果&#xff0c;具体的概念本文也不做过多赘述。本篇文章将主要整理几篇有代表性的Prompt方法在多模态领域中的应用。 Mult…

收银系统源代码-收银端UI风格

智慧新零售收银系统是一套线下线上一体化收银系统&#xff0c;给商户提供含线下收银称重、线上商城、精细化会员管理、ERP进销存、丰富营销活动、移动店务助手等一体化的解决方案。 如Windows版收银&#xff08;exe安装包&#xff09;、安卓版收银&#xff08;apk安装包&#…

“创新电商营销:‘精选返现‘模式引领购物新风尚“

在电子商务领域的蓬勃发展中&#xff0c;创新营销模式层出不穷&#xff0c;其中“精选返现”模式凭借其创新的互动机制与激励机制&#xff0c;赢得了广大消费者的青睐。该模式通过优化价格策略、融入社交互动及构建梯度回馈体系&#xff0c;有效激发了消费者的购买动力&#xf…

从零开始学LangChain(7):Callback模块

回调模块允许接到LLM应用程序的各个阶段&#xff0c;鉴于LLM的幻觉问题&#xff0c;这对于日志记录、监视、流式处理和其他任务非常有用&#xff0c;现在也有专用的工具Helicone&#xff0c;Arize AI等产品可用&#xff0c;下面我们开始看代码&#xff1a; 自定义回调对象 所…

Labview_压缩文件

调用顺序 源文件 生成后的文件 1.新建ZIP文件 生成ZIP文件的路径&#xff1a;为最终生成ZIP文件的路径&#xff0c;需要提供ZIP文件的名称和类型 2.添加文件到压缩文件 源文件路径&#xff1a;为需要压缩的文件路径&#xff0c;非文件夹路径 生成ZIP文件时的路径&#x…

uniapp 数据父传子

文章目录 可能出现的问题 在uni-app中&#xff0c;父组件向子组件传递数据主要通过属性绑定的方式实现。这里提供一个简单的示例来说明如何进行父传子的数据传递&#xff1a; 父组件 准备数据: 在父组件的data中定义要传递的数据。 export default {data() {return {parentMe…