PDA:Prompt-based Distribution Alignment for Unsupervised Domain Adaptation

news2024/12/28 5:06:53

文章汇总

image.png
image.png
式中, y s y^s ys表示源域数据的one-hot ground-truth, K K K为类数, w i w_i wi z ~ s \tilde{z}_s z~s分别表示源域经过提示调优的最终文本表示和最终图像表示的第 i i i类。
同理,为了进一步利用目标领域的数据,我们使用伪标签来训练这些未标记的数据。为了提高这些伪标签的可靠性,我们设置了一个固定的阈值 τ \tau τ如果CLIP预测的给定图像的最大概率 τ p \tau_p τp低于该阈值,则丢弃伪标签。同样,我们采用对比损失函数:
image.png
其中 I ( ⋅ ) \mathbb{I}(\cdot) I()为指示函数, y ~ t \tilde{y}^t y~t为目标域数据的one-hot ground-truth, z ~ t \tilde{z}^t z~t为目标域经过提示调优后的最终图像表示(有IFT那个模块生成)。
如何构建特征库
通过访问源域和目标域的数据,我们可以从两个域获得文本特征和图像特征。基于CLIP强大的Zero-shot inference能力,我们可以构建鲁棒准确的特征库。首先,我们用Zero-shot inference CLIP的预测为源域中的图像生成置信度分数(即最大概率)。类似地,我们为目标域中的每个图像生成置信度分数和相应的伪标签。具体来说,最大置信度得分的指标就是图像的伪标签。我们为源域和目标域选择在每个类别中置信度得分最高的图像的视觉特征,并构建一个K-way C-shot源域特征库和目标域特征库,其中K表示类别数量,C表示每个类别的样本数量。然后分别得到每一类的质心特征作为最终的源域特征库 z s c z_{sc} zsc和目标域特征库 z t c z_{tc} ztc
IFT流程如下:
image.png
IFT利用特征库引导图像获得自增强和跨域特征,如图2(右)所示。我们首先使用一个权值共享的投影层 f p r e f_{pre} fpre,即一个三层多层感知器,将图像特征 z ^ \hat z z^、源域特征库 z s c z_{sc} zsc、目标域特征库 z t c z_{tc} ztc转化为查询、键和值,可以表示为:
image.png
我们使图像特征关注源域和目标域特征库,从而得到增强的图像特征。这些特征然后被另一个重量共享投影仪转换 f p o s t f_{post} fpost。注意整个过程可表述为:
image.png
其中, ϵ \epsilon ϵ表示尺度值, T T T表示转置运算。然后,我们将一个加范数模块与原始的视觉特征结合起来,可以表示为:
image.png
其中 ∥ ⋅ ∥ 2 \|\cdot\|_2 2表示2范数。则最终的增广图像表示 z ^ \hat z z^可表示为 β 1 z v s + β 2 z v t \beta_1z_{vs}+\beta_2z_{vt} β1zvs+β2zvt
然后利用对比损失函数对源域和目标域的图像表示和特征库进行对齐,可以表示为:
image.png
其中 h h h表示IFT模块, h ( z ^ s ) h(\hat z^s) h(z^s)表示源域的增广图像表示。
与基分支相似,我们利用目标域的数据,得到目标域 z ^ t \hat z^t z^t的增广图像表示。则采用对比损失函数:
image.png
总损失如下:
image.png

摘要

最近,尽管大型预训练视觉语言模型(VLMs)在广泛的下游任务上取得了前所未有的成功,但现实世界的无监督域自适应(UDA)问题仍然没有得到很好的探索。因此,在本文中,我们首先通过实验证明了无监督训练的VLMs可以显著降低源域和目标域之间的分布差异,从而提高UDA的性能。然而,直接在下游UDA任务上部署这种模型的一个主要挑战是提示工程,这需要对齐源领域和目标领域的领域知识,因为UDA的性能受到良好的领域不变表示的严重影响。我们进一步提出了一种基于提示的分布对齐方法,将领域知识整合到提示学习中。具体而言,PDA采用两分支提示范式,即基础分支和对齐分支。基分支专注于将与类相关的表示集成到提示符中,确保不同类之间的区分。为了进一步减少域差异,在对齐分支中,我们分别为源域和目标域构建了特征库,并提出了图像引导特征调优(IFT),使输入关注特征库,有效地将自增强和跨域特征集成到模型中。这样,这两个分支可以相互促进,以增强VLMs对UDA的适应性。我们在三个基准上进行了广泛的实验,以证明我们提出的PDA达到了最先进的性能。代码可在https://github.com/BaiShuanghao/Prompt-basedDistribution-Alignment上获得。

1.介绍

无监督域自适应(UDA)旨在通过使用标记的源域和未标记的目标域来提高预训练模型在目标域的泛化性能(Wilson and Cook 2020;Zhu等2023年)。已经提出了许多方法来解决UDA问题,主要包括对抗性训练(Ganin和Lempitsky 2015;Rangwani et al 2022)和度量学习(Saito et al 2018;唐、陈、贾2020;张,Wang, and Gai 2020)。然而,通过领域对齐来缓解分布可能会无意中导致语义信息的丢失,这是因为语义和领域信息的纠缠性(Tang, Chen, and Jia 2020;Ge等人2022;Zhang, Huang, and Wang 2022)。
最近,像CLIP (Radford et al . 2021)这样的大型视觉语言模型(VLMs)在各种下游任务中表现出了令人印象深刻的泛化性能。通过分离视觉和语义表示,可以避免语义信息的丢失,提高UDA的性能。鉴于此,我们进行了一项实证实验,以证明VLMs对UDA问题的适用性。具体来说,我们评估了单模模型视觉变压器(ViT) (Dosovitskiy等人2021)和带有手工制作提示的zero-shot CLIP的性能。在图1中,尽管CLIP的源特征 r ( I s ) r(I_s) r(Is)和目标特征 r ( I t ) r(I_t) r(It)的紧密度与监督训练的ViT相似。,但最大平均差异(MMD)和KL散度(KL)最小,从而提高了目标域(Acc)的精度。这表明CLIP有可能将UDA的域差异最小化,从而受益于多模态相互作用。
image.png
图1:Office-Home的度量比较。值越高越好。 r r r度量特征的紧度(即类内 L 2 L_2 L2距离和类间 L 2 L_2 L2距离 L 2 i n t e r L^{inter}_2 L2inter)。MMD和KL散度度量域差异。 T , I s T,I_s T,Is I t I_t It分别表示源域和目标域的文本特征和图像特征。该方法具有最易识别的文本特征、最紧凑的图像特征、最小的域差异和最佳的准确率。
为了进一步使VLM适应下游UDA任务,最有效的范例之一是提示调优。当前最先进的提示调优方法,如CoOp (Zhou等)2022b)和MaPLe (Khattak et al . 2023)在一些特定的下游任务上表现出了优越的性能。CoOp方法采用软提示学习合适的文本提示,MaPLe进一步引入视觉语言提示,确保相互协同。如图1所示,我们观察到1)与CLIP相比,MaPLe朝着对齐域迈出了一步,其较低的KL散度和MMD证明了这一点,这表明提示调优可以帮助最小化域移位。2) MaPLe的图像特征更加紧凑,提示调整可以进一步提高CLIP模型的判别能力。尽管如此,这些提示调优方法(如CoOp或MaPLe)可能不足以完全解决域转移问题,因为这些方法主要关注提示的位置,而可能无法直接解决域转移的潜在原因。因此,我们认为提示不仅要注重其设计,而且要通过将领域知识融入提示中来适应不同的领域。
为此,我们提出了一种基于提示的分布对齐(PDA,Prompt-based Distribution Alignment)方法。PDA由两个支路组成,即基支路和对准支路。基本分支生成带有提示调优的图像和文本表示,其重点是将与类相关的表示集成到提示中,确保每个领域的不同类之间的区分。UDA的主要目标是最小化图像表示的分布偏移。对齐分支利用图像表示引入领域知识,使领域差异最小化。为此,我们首先构建源域和目标域特征库,并提出图像引导特征调优(IFT),使输入的图像表示关注特征库,从而有效地将自增强和跨域特征集成到模型中。如图1所示,PDA不仅在获得更容易区分的图像和文本表示方面表现出色,而且还有效地缓解了域差异。因此,我们的方法可以保证模型的可分辨性,并有效地捕获源域和目标域的重要特征,从而实现域对齐,使模型更好地适应目标域。我们的主要贡献如下:
•我们首先通过实验验证了VLM在UDA下游任务上的有效性。然后,在此基础上,我们进一步提出了一种基于提示的分布对齐(PDA)方法来将提示调整到目标域。
•提出的PDA包括两个训练分支。首先,基分支确保了不同类之间的区别。其次,对齐分支通过图像引导特征调优获得域不变信息;
•广泛的实验证明了所提出的PDA的有效性,它在Office-Home, Office-31和VisDA-2017上实现了最先进的性能。

2.相关工作

2.1无监督域自适应

无监督域自适应(UDA)旨在通过学习域不变特征表示来对齐源域和目标域(Zhang等人2023b;Chen, Xiao, and Kuang 2022;Xiao et al . 2022)。一种对齐域的方法是最小化不同域之间的散度。已经提出了许多散度度量,如最大平均差异(MMD) (Long et al . 2015),相关对齐(CORAL) (Sun, Feng, and Saenko 2016)和最大密度散度(MDD) (Zhang et al . 2019)。另一种工作是由对抗性学习的成功所激发的。通过将优化过程建模为极大极小问题(Ganin and Lempitsky 2015;Long等人2018;Rangwani et al . 2022;Xiao et al . 2021),引入了一个域鉴别器来区分来自不同域的样本,目的是训练模型生成可以欺骗域鉴别器的域不变特征。随着变压器模型的出现,TVT (Yang et al . 2023)提出了一种自适应模块来获得可转移和可判别的特征,CDTrans (Xu et al . 2022)利用交叉关注模块的鲁棒性,提出了一种跨域变压器来直接对特征进行校准。与这些主流的单模态UDA方法不同,我们专注于利用视觉语言模型固有的可转移性,由于多模态交互,视觉语言模型显示出有希望的领域对齐能力。

2.2视觉语言模型

预训练的视觉语言模型(VLMs)通过各种预训练任务学习图像-文本相关性,例如掩膜语言建模(Kim, Son, and Kim 2021),掩膜语言建模(Tan and Bansal 2019),图像文本匹配(Huang et al 2021)和对比学习(Jia et al 2021;张等2022a;Chen et al . 2021)。尽管这些模型在包括零热和少量视觉识别在内的广泛任务中取得了前所未有的成功,但将它们有效地适应下游任务仍然是一个艰巨的挑战。已经提出了许多工作,通过引入额外的特征适配器来增强下游任务的泛化能力(Gao等人2021;张等2023a;Bai et al . 2024)、注意力(Guo et al . 2023)、缓存模型(Zhang et al . 2022b)等。提示学习范式最初用于自然语言处理(NLP)领域,也被集成到VLMs中,成为在各种下游任务中微调VLMs的最有效方法之一。在这项工作中,我们遵循提示学习方法的路线,提出了一种基于提示的分布对齐方法,以提高CLIP的可转移性,以解决UDA问题。

2.3视觉语言模型的提示微调

提示微调是参数高效调谐的重要组成部分之一,其目的是通过输入组合(Pfeiffer等)只学习少量的参数2023;Zhu et al . 2023b),同时保持大模型固定。CoOp (Zhou et al . 2022b)首次在VLM中引入了软提示,证明了合适的文本提示可以提高图像识别性能。CoCoOp (Zhou et al .2022a)通过集成轻量级神经网络对CoOp进行扩展,为单个图像动态生成提示,以处理提示的过拟合问题。VPT (Jia et al 2022)在变压器模型中使用一些视觉提示实现了令人印象深刻的结果。此外,MaPLe (Khattak et al . 2023)将文本和视觉提示结合到CLIP中,以改善文本和图像表示之间的对齐。为了利用UDA(无监督域自适应)提示调优的有效性,我们引入了一个由基分支和对齐分支组成的双分支训练范式。基础分支利用提示调优来增强CLIP模型的可辨别性。对于对齐分支,我们设计了一个图像引导的特征调优来减轻域差异。

3 Preliminaries

3.1无监督域适应

UDA侧重于利用源域的标记数据和目标域的未标记数据来提高模型的泛化性能。形式上,给定源域的标记数据集 D S = { x i s , y i s } i = 1 n s D_S=\{x^s_i,y_i^s\}^{n_s}_{i=1} DS={xis,yis}i=1ns,未标记数据集 D t = { x j t } j = 1 n t D_t=\{x^t_j\}^{n_t}_{j=1} Dt={xjt}j=1nt,其中 n s n_s ns n t n_t nt分别表示源域和目标域的样本大小。注意,两个域的数据是从两个不同的分布中采样的,我们假设这两个域共享相同的标签空间。我们将输入空间表示为 X X X,将标签集表示为 Y Y Y。有一个从图像到标签的映射 M : { X } → Y M:\{X\}\rightarrow Y M:{X}Y。在这项工作中,我们将提示符 V V V合并到输入中,因此从图像和提示符到标签的映射可以重新表述为 M : { X , V } → Y M:\{X,V\}\rightarrow Y M:{X,V}Y。我们的目标是缓解 D S D_S DS D t D_t Dt之间的领域差异问题,并学习一个可以促进知识从源领域转移到目标领域的广义提示 P P P

3.2回顾提示学习

对比语言-图像预训练(CLIP)模型由图像编码器和文本编码器组成,分别对图像和相应的自然语言描述进行编码。
Zero-shot inference。预训练的CLIP模型适应于具有手工提示的下游任务,而不是对模型进行微调。文本总是手动设计为“a photo of a [CLASS]”([CLASS]是类标记)。使用图像表示 z z z与对应第 i i i类的文本表示 w i w_i wi之间的余弦相似度 s i m ( w i , z ) sim(w_i,z) sim(wi,z)计算图像-文本匹配分数。图像表示从具有输入图像的图像编码器中派生,而文本表示 w i w_i wi使用与第 i i i类关联的提示描述从文本编码器中提取。图像属于第 i i i类的概率可表示为:
image.png
式中 t t t为温度参数, K K K为类数, s i m sim sim为余弦相似度。
文本提示调优。避免了人工提示工程,增强了CLIP的传递能力。CoOp (Zhou et al . 2022b)引入了一组 M M M个连续可学习上下文向量 v = [ v 1 , v 2 , . . . , v M ] v=[v^1,v^2,...,v^M] v=[v1,v2,...,vM],则第 i i i类文本提示符 t i t^i ti定义为 t i = [ v , c i ] t^i = [v,c^i] ti=[v,ci],其中 c i c^i ci为固定输入令牌嵌入。可学习的上下文向量可以扩展到基于transformer架构的文本编码器的更深层次的transformer层,因此每层输入可以重新表述为 [ v j , c j ] j = 1 J [v_j,c_j]^J_{j=1} [vj,cj]j=1J,其中 J J J为文本编码器中的transformer层数, [ ⋅ , ⋅ ] [\cdot,\cdot] [,]表示连接操作。
视觉提示调整。它采用了与文本提示调优类似的范例,其中自动学习输入到图像编码器的每一层的附加上下文向量。对于基于transformer的图像编码器,VPT (Jia et al . 2022)在一系列patch embedding e e e和可学习的类令牌 c c c之间插入提示符集合 v ~ \tilde{v} v~,可设计为 [ v ~ j , e j , c j ] j = 1 J [\tilde{v}_j,e_j,c_j]^J_{j=1} [v~j,ej,cj]j=1J
多模态提示协调。文本提示符 v v v和可视提示符 v ~ \tilde{v} v~组合成CLIP。例如,MaPLe (Khattak et al . 2023)通过在两种模式之间共享提示来调整CLIP的视觉和语言分支。

4.方法

受上一节观察结果的启发,我们尝试为UDA设计一种高效且有效的提示调优方法。为了增强提示的可转移性,我们提出了一种基于提示的分布对齐(PDA)方法,其框架如图2所示。我们介绍我们的PDA方法如下。
image.png
图2:提出的基于提示的分布对齐(PDA)方法的概述。雪表示冻结的参数,火表示可学习的参数。从左到右,我们分别展示了PDA的详细框架和IFT模块的架构。我们的PDA方法主要采用多模态提示调谐。此外,IFT模块使视觉特征参加源/目标域特征库进行域对齐。

4.1 Prompting for Base Branch

image.png
提示的设计。我们主要采用多模式提示模式。对于图像编码器的早期层,使用文本提示符通过投影层生成视觉提示符。这意味着使用文本提示来指导图像的编码过程,使图像在特征空间中具有与给定文本相关的信息,从而实现图像与相关文本信息的对齐。对于图像编码器的后一层,每一层使用一个独立的提示符。这种设计允许每一层独立捕获图像的不同视觉和语义特征,实现更好的图像-文本交互,捕获不同的视觉和语义特征。
损失函数。然后使用对比损失函数对图像和文本表示进行对齐,可以表示为:
image.png
式中, y s y^s ys表示源域数据的one-hot ground-truth, K K K为类数, w i w_i wi z ~ s \tilde{z}_s z~s分别表示源域经过提示调优的最终文本表示和最终图像表示的第 i i i类。
为了进一步利用目标领域的数据,我们使用伪标签来训练这些未标记的数据,如Ge等人(Ge et al 2022)。伪标签由CLIP模型的预测生成。为了提高这些伪标签的可靠性,我们设置了一个固定的阈值 τ \tau τ如果CLIP预测的给定图像的最大概率 τ p \tau_p τp低于该阈值,则丢弃伪标签。同样,我们采用对比损失函数:
image.png
其中 I ( ⋅ ) \mathbb{I}(\cdot) I()为指示函数, y ~ t \tilde{y}^t y~t为目标域数据的one-hot ground-truth, z ~ t \tilde{z}^t z~t为目标域经过提示调优后的最终图像表示。

4.2 Pipeline of Alignment Branch

对于对齐分支,我们为源域和目标域构建特征库,并提出图像引导特征调优(IFT),使输入关注特征库以实现域对齐。
构建特征库。通过访问源域和目标域的数据,我们可以从两个域获得文本特征和图像特征。基于CLIP强大的Zero-shot inference能力,我们可以构建鲁棒准确的特征库。首先,我们用Zero-shot inference CLIP的预测为源域中的图像生成置信度分数(即最大概率)。类似地,我们为目标域中的每个图像生成置信度分数和相应的伪标签。具体来说,最大置信度得分的指标就是图像的伪标签。我们为源域和目标域选择在每个类别中置信度得分最高的图像的视觉特征,并构建一个K-way C-shot源域特征库和目标域特征库,其中K表示类别数量,C表示每个类别的样本数量。然后分别得到每一类的质心特征作为最终的源域特征库 z s c z_{sc} zsc和目标域特征库 z t c z_{tc} ztc
image.png
图像引导特征调整(IFT)。IFT利用特征库引导图像获得自增强和跨域特征,如图2(右)所示。我们首先使用一个权值共享的投影层 f p r e f_{pre} fpre,即一个三层多层感知器,将图像特征 z ^ \hat z z^、源域特征库 z s c z_{sc} zsc、目标域特征库 z t c z_{tc} ztc转化为查询、键和值,可以表示为:
image.png
我们使图像特征关注源域和目标域特征库,从而得到增强的图像特征。这些特征然后被另一个重量共享投影仪转换 f p o s t f_{post} fpost。注意整个过程可表述为:
image.png
其中, ϵ \epsilon ϵ表示尺度值, T T T表示转置运算。然后,我们将一个加范数模块与原始的视觉特征结合起来,可以表示为:
image.png
其中 ∥ ⋅ ∥ 2 \|\cdot\|_2 2表示2范数。则最终的增广图像表示 z ^ \hat z z^可表示为 β 1 z v s + β 2 z v t \beta_1z_{vs}+\beta_2z_{vt} β1zvs+β2zvt
损失函数。然后利用对比损失函数对源域和目标域的图像表示和特征库进行对齐,可以表示为:
image.png
其中 h h h表示IFT模块, h ( z ^ s ) h(\hat z^s) h(z^s)表示源域的增广图像表示。
与基分支相似,我们利用目标域的数据,得到目标域 z ^ t \hat z^t z^t的增广图像表示。则采用对比损失函数:
image.png
因此,我们的PDA方法可以使用总对比损失进行端到端训练:
image.png
其中 γ \gamma γ是超参数。在测试阶段,我们计算来自基础分支和对齐分支的预测的加权和,从而得到我们模型的最终预测。这两个分支不仅对增强模型的可分辨性,而且对调整源域和目标域之间的分布转移至关重要。

5.实验

image.png
image.png
image.png
image.png
image.png
如图3所示,我们通过t-SNE将zero-shot CLIP、MaPLe和PDA在三个数据集中的四个任务上提取的图像特征可视化。我们可以观察到,我们的PDA方法可以更好地对齐两个域。

6.结论

在本文中,我们证明了视觉语言模型和VLM的提示调优对于无监督域自适应的有效性。在此基础上,我们将分布对齐引入到提示调优中,提出了一种基于提示的分布对齐方法。这两个分支不仅在提高模型的可分辨性方面起着至关重要的作用,而且在减轻源域和目标域之间的分布转移方面起着至关重要的作用。大量的实验证实了我们提出的方法的有效性,我们的PDA方法在无监督域自适应方面取得了新的最先进的性能。由于学习提示的可转移性,我们可以在未来的工作中进一步探索无监督域适应或其他下游任务的提示对齐。

参考资料

论文下载(AAAI 2024)

https://arxiv.org/abs/2312.09553v2
image.png

代码地址

https://github.com/BaiShuanghao/Prompt-based-Distribution-Alignment

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1908568.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

多用户挂售转卖竞拍闪拍商城系统/NFT数藏系统/后端PHP+前端UNIAPP源码带教程(亲测源码)

挂售转卖竞拍商城系统源码/竞拍系统/转拍闪拍系统/后端PHP前端UNiapp源码 亲测可用 1、后台管理:系统管理员通过后台可以轻松添加商品进行挂单。这包括商品的详细信息,如名称、描述、价格、库存等。 商品展示:挂单后的商品会在商城前端进行…

Mysql笔记-v2【7月8日更新】

零、 help、\h、? 调出帮助 mysql> \hFor information about MySQL products and services, visit:http://www.mysql.com/ For developer information, including the MySQL Reference Manual, visit:http://dev.mysql.com/ To buy MySQL Enterprise support, training, …

概论(二)随机变量

1.名词解释 1.1 样本空间 一次具体实验中所有可能出现的结果,构成一个样本空间。 1.2 随机变量 把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自…

MySQL高级----InnoDB引擎

逻辑存储结构 表空间 表空间(ibd文件),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。 段 段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是…

DETR目标检测框架

概念:DETR(Detection Transformer)是一种基于Transformer架构的端到端目标检测框架。它与传统的基于区域提议的目标检测方法有所不同。传统方法通常依赖于手工设计的组件(如锚框、非极大值抑制等),而DETR将…

设计模式7-装饰模式

设计模式7-装饰模式 写在前面动机模式定义结构代码推导原始代码解决问题分析 选择装饰模式的理由1. 职责分离(Single Responsibility Principle)2. 动态扩展功能3. 避免类爆炸4. 开闭原则(Open/Closed Principle)5. 更好的组合复用…

【数据结构】11.快速排序

一、快速排序的思想 快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右…

深度解密Spark性能优化之道课程

课程通过实战案例解析和性能调优技巧的讲解,帮助学员提升大数据处理系统的性能和效率。课程内容涵盖了Spark性能调优的各个方面,包括内存管理、并行度设置、数据倾斜处理、Shuffle调优、资源配置等关键技术和策略。学员将通过实际案例的演示和分析&#…

【云原生】Kubernetes部署EFK日志分析系统

Kubernetes部署EFK日志分析系统 文章目录 Kubernetes部署EFK日志分析系统一、前置知识点1.1、k8s集群应该采集哪些日志?1.2、k8s比较流行的日志收集解决方案1.3、fluentd、filebeta、logstash对比分析1.3.1、Logstash1.3.2、Filebeat1.3.3、fluentd 1.4、EFK工作原理…

设计模式探索:观察者模式

1. 观察者模式 1.1 什么是观察者模式 观察者模式用于建立一种对象与对象之间的依赖关系,当一个对象发生改变时将自动通知其他对象,其他对象会相应地作出反应。 在观察者模式中有如下角色: Subject(抽象主题/被观察者&#xf…

【数据结构】12.排序

一、排序的概念及其运用 1.1排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记…

(自适应手机端)保健品健康产品网站模板下载

(自适应手机端)保健品健康产品网站模板下载PbootCMS内核开发的网站模板,该模板适用于装修公司网站、装潢公司网站等企业,当然其他行业也可以做,只需要把文字图片换成其他行业的即可;自适应手机端,同一个后台&#xff0…

sql盲注

文章目录 布尔盲注时间盲注 布尔盲注 介绍:在网页只给你两种回显的时候是用,类似于布尔类型的数据,1表示正确,0表示错误。 特点:思路简单,步骤繁琐且麻烦。 核心函数: length()函数substr()函…

ZD屏幕录像机解锁版下载及安装教程 (一款小巧的轻量级屏幕录像工具)

录屏系列软件安装目录 一、超好用的傲软录屏下载和解锁版安装教程 (专业好用的桌面录屏软件)) 二、班迪录屏Bandicam v7解锁版安装教程(高清录屏软件) 三、Mirillis Action v4 解锁版安装教程(专业高清屏幕录像软件) 四、Aiseesoft Scree…

C语言编程3:运算符,运算符的基本用法

C语言3🔥:运算符,运算符的基本用法 一、运算符🌿 🎇1.1 定义 运算符是指进行运算的动作,比如加法运算符"“,减法运算符”-" 算子是指参与运算的值,这个值可能是常数&a…

Apache Spark分布式计算框架架构介绍

目录 一、概述 二、Apache Spark架构组件栈 2.1 概述 2.2 架构图 2.3 架构分层组件说明 2.3.1 支持数据源 2.3.2 调度运行模式 2.3.3 Spark Core核心 2.3.3.1 基础设施 2.3.3.2 存储系统 2.3.3.3 调度系统 2.3.3.4 计算引擎 2.3.4 生态组件 2.3.4.1 Spark SQL 2.…

三菱PLC 实现PID控制温度 手搓PID指令!!!

目录 1.前言 2.PID公式的讲解 3.程序 4.硬件介绍 5.EPLAN图纸 6.成果展示 7.结语 1.前言 新手想要学习PLC的PID控制 首先会被大串的PID 公式吓到 PID公式有很多种:基本PID 位置式 增量式 模拟式 理想型 等等 但是 不要急 别看这么多公式 其实 将公式拆…

如何通过ip地址判断网络类别

在计算机网络中,IP地址不仅是设备在网络中的唯一标识,同时也隐含了网络类别的信息。了解如何根据IP地址判断网络类别,对于网络管理员、系统工程师以及网络爱好者来说都是一项基本技能。本文将详细介绍如何通过IP地址判断网络类别。 一、IP地址…

普中51单片机:矩阵按键扫描与应用详解(五)

文章目录 引言电路图开发板IO连接矩阵键盘的工作原理行列扫描逐行/逐列扫描 LCD1602代码库代码演示——暴力扫描代码演示——数码管(行列式)代码演示——线翻转法代码演示——LCD1602密码锁 引言 矩阵按键是一种通过行列交叉连接的按键阵列,可以有效地减少单片机I/…

LibreOffice的国内镜像安装地址和node.js国内快速下载网站

文章目录 1、LibreOffice1.1、LibreOffice在application-conf.yml中的配置2、node.js 1、LibreOffice 国内镜像包网址:https://mirrors.cloud.tencent.com/libreoffice/libreoffice/ 1.1、LibreOffice在application-conf.yml中的配置 jodconverter:local:enable…