基于AI的3D场景重建技术新突破!破局自动驾驶端到端仿真

news2024/12/30 3:22:29

场景的保真度,对于自动驾驶仿真和合成数据生成至关重要,场景重建保真度不足,将极大地制约高阶自动驾驶系统的训练效果。同时,在用于训练大模型和具身智能的合成数据领域,同样对低成本的高保真场景有巨大的需求。

在此背景下,凭借多年的技术积累,51WORLD旗下AI合成数据及仿真平台公司51Sim基于AI算法,将3D Gaussian Splatting与传统图形渲染技术创新融合,不仅攻克了3DGS技术泛化能力不足等“卡脖子”难题,实现了在拟真度方面的突破性进展,还显著提高了自动驾驶系统的训练质量及仿真的置信度

“端到端”自动驾驶对高保真场景需求迫切

目前已量产的智能驾驶,大多数采用的都是模块化架构:将智能驾驶拆分成感知、预测、规划等典型任务,并交给专门的AI模型或模块来处理。由于系统中包含多个模型,因而需要对每个模型都进行专门的训练、优化和迭代。而端到端架构,则是通过一个模型来实现,因此能够更加高效和低成本地聚焦核心功能,这也让端到端解决方案正逐渐成为主流

端到端方案对于高保真场景的需求更加迫切,由于端到端系统需要能够在各种复杂场景中自如应对,需要将大量标注有自动驾驶行为的视频投入自动驾驶训练。然而传统的3D场景仿真技术因为场景的真实感不足、多样性欠缺和成本高等问题,已无法完整满足端到端落地的需求。

针对这一现状,51Sim创新性地将3D Gaussian Splatting通过AI算法融合到传统图形渲染引擎中,在拟真度方面取得了突破性进展。这项技术重新定义了高保真3D场景的重建标准,通过提升仿真的真实感、弥补了单一技术的不足并大幅降低了场景重建的成本。

图片

3D Gaussian Splatting 技术

3D高斯泼溅(3D Gaussian Splatting, 简称3DGS)是用于实时辐射场渲染的3D 高斯分布描述的一种渲染技术,通过将多视角图像表示的三维场景转化为各向异性3D高斯点云表示的场景,并能通过参数优化和密度控制来提高重建质量。

3DGS在渲染速度、图像质量、定位精度等方面呈现出了非常优异的表现,全面补足了NeRF的短板。同时,基于3DGS的重建场景能够1:1复刻在真实智驾上发现的边缘场景(Corner Case),通过动态场景泛化,提升端到端智驾系统应对Corner Case的能力。

图片

3DGS重建场景

尽管3DGS在创建高质量渲染方面表现出色,但在动态场景交互和细节保留方面存在一些局限性。例如,3DGS在处理大规模场景和动态物体时,可能会出现细节缺失、伪影和泛化能力不足的问题。

因此,目前3DGS还难以在复杂的自动驾驶场景中实现高效的落地应用

51Sim融合方案突破3DGS技术局限

针对3DGS在实际应用上的短板,51Sim凭借多年在仿真领域的技术积累,将3DGS通过AI算法驱动与传统图形渲染技术融合,突破了单一技术的局限。

图片

在通过3DGS点云建模的基础上,通过优化的AI融合算法,将静态3DGS场景与51Sim此前积累的静态场景库、动态的交通场景库和各类传感器仿真进行了自然融合,确保了体场景的连贯性和视觉真实感,并实现了场景丰富度指数级增加。同时,利用先进的全局渲染技术,生成高质量视图,确保多相机视角的一致性和高保真度,实现了逼真的渲染效果

图片

3DGS融合动态、静态交通要素

图片

融合光照天气

应用场景覆盖各类具身/非具身智能领域

51Sim融合方案具有高质量和实时渲染的能力,高保真的模拟场景不仅提高了自动驾驶系统的训练质量,还显著提升了仿真的真实性,使其几乎可以达到肉眼难辨的程度,大幅提升了仿真的置信度,并弥补了3DGS在细节和泛化能力的不足,这也是目前行业内首例真正可用于自动驾驶仿真的3DGS解决方案。

图片

BEV多摄像头视频生成

除自动驾驶领域的应用之外,该方案还能生成高质量合成数据用于视频大模型训练,助力AI大模型公司以提升文生视频的训练效果。

图片

Future

高保真场景重建,将仿真置信度提升到了新的高度,对于端到端自动驾驶的进化与落地具有关键意义。未来,51Sim 将持续迭代3DGS融合技术,为AI训练提供充足的数据燃料,赋能更广泛的行业应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1908478.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Python_GUI】thinker布局管理——pack()方法

pack()方法是比较常用的布局组件之一:其语法如下: widget.pack(options) 其常用的参数及含义如下: 参数含义side设置组件水平展示或垂直展示padx设置组件距离窗口的水平距离pady设置组件距离窗口的垂直距离ipadx设置组件内的文字距离组件边…

从零开始做题:My_lllp

题目 给出一张png图片 解题 ┌──(holyeyes㉿kali2023)-[~/Misc/题目/zulu/My_lllp] └─$ python2 lsb.py extract my_lllp.png out.txt my_lllp [] Image size: 1080x1079 pixels. [] Written extracted data to out.txt. ┌──(holyeyes㉿kali2023)-[~/Misc/题目/zul…

HSP_15章 Python_模板设计模式和oop进阶总结

P136 模板设计模式 1. 设计模式简介 设计模式是在大量的实践中总结和理论化之后优选的代码结构、编程风格、以及解决问题的思考方式 设计模式就像是经典的棋谱,不同的棋局,我们用不同的棋谱,免去我们自己再思考和摸索 2. 模板设计模式 基本…

DFS回溯剪枝|KMP通过数组记录减少判断子字符串|思路

KMP|DFS回溯剪枝 #1、NC149kmp 初步思路: 两层for循环,一个T的字符开始与 S的字符比较,挨个比较,遇到不同就continue当前T的字符,重复步骤》效率太低,超时 eg: TABSABABABD SABABD S!A时&#…

Windows10/11家庭版开启Hyper-V虚拟机功能详解

Hyper-V是微软的一款虚拟机软件,可以使我们在一台Windows PC上,在虚拟环境下同时运行多个互相之间完全隔离的操作系统,这就实现了在Windows环境下运行Linux以及其他OS的可能性。和第三方虚拟机软件,如VMware等相比,Hyp…

Java版Flink使用指南——定制RabbitMQ数据源的序列化器

大纲 新建工程新增依赖数据对象序列化器接入数据源 测试修改Slot个数打包、提交、运行 工程代码 在《Java版Flink使用指南——从RabbitMQ中队列中接入消息流》一文中,我们从RabbitMQ队列中读取了字符串型数据。如果我们希望读取的数据被自动化转换为一个对象&#x…

white-space属性换行

white-space 属性可以控制元素中文本的换行方式。常用的取值有: normal(默认值):根据容器的大小自动换行。nowrap:文本不进行换行,超过容器宽度时会溢出。pre:保留原始的空白符(空格…

5.Python学习:面向对象

1.面向对象和面向过程的区别 以下五子棋为例: 2.类和实例 (1)类是抽象的模板,实例是根据模板创建出来的具体的对象 (2)比如人类就是一个类,刘亦菲就是人类的一个实例 2.1 新建类和类的实例…

【uniapp-ios】App端与webview端相互通信的方法以及注意事项

前言 在开发中,使用uniapp开发的项目开发效率是极高的,使用一套代码就能够同时在多端上线,像笔者之前写过的使用Flutter端和webview端之间的相互通信方法和问题,这种方式本质上实际上是h5和h5之间的通信,网上有非常多…

计算机的错误计算(二十五)

摘要 介绍(不)停机问题。给了一个算式,当计算机的输出为0时,一般需要提高计算精度继续计算,一直到获得非0值或有效数字。但是,由于事先不清楚算式的准确值是否为0或不为0,因此往往陷入两难境地…

LLM - Transformer 的 多头自注意力(MHSA) 理解与源码

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/140281680 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 在 Transformer 中,多头自注意力机制 (MHSA, Multi-Head Self-Attenti…

关系型数据库MySQL和时序数据库的区别?

时序数据库和关系型数据库是两种不同类型的数据库系统,它们在设计理念、存储结构、性能优化等方面有显著差异,以适应不同的应用场景和需求。具体对比如下: 数据存储结构 时序数据库:使用列式存储,每条记录通常包含时间…

Johnson Counter

目录 描述 输入描述: 输出描述: 参考代码 描述 请用Verilog实现4位约翰逊计数器(扭环形计数器),计数器的循环状态如下。 电路的接口如下图所示。 输入描述: input clk , input …

力扣喜刷刷--day1

1.无重复字符的最长子串 知识点:滑动窗口 基本概念 窗口:窗口是一个连续的子序列,可以是固定长度或可变长度。滑动:窗口在数据序列上移动,可以是向左或向右。边界:窗口的起始和结束位置。 应用场景 字符…

YOLOv10改进 | Conv篇 | 利用DualConv二次创新C2f提出一种轻量化结构(轻量化创新)

一、本文介绍 本文给大家带来的改进机制是利用DualConv改进C2f提出一种轻量化的C2f,DualConv是一种创新的卷积网络结构,旨在构建轻量级的深度神经网络。它通过结合33和11的卷积核处理相同的输入特征映射通道,优化了信息处理和特征提取。Dual…

关于 off-by-one 的学习

pwn的功底还很浅,仅仅是记录自己学习的一点心得体会。 后续随着学习深入,还会补知识点和题目上来。 知识点 优秀的学习资料 关于off by null的学习总结 | ZIKH26 Chunk Extend and Overlapping | ctfwiki 一点理解 与off-by-one联系很紧密的就是上…

Fastapi在docekr中进行部署之后,uvicorn占用的CPU非常高

前一段接点小活,做点开发,顺便学了学FASTAPI框架,对比flask据说能好那么一些,至少并发什么的不用研究其他的asgi什么的,毕竟不是专业开发,能少研究一个东西就省了很多的事。 但是部署的过程中突然之间在do…

典型案例 | 基于全数字实时仿真的嵌入式DevOps解决方案

为丰富浙江省信息技术应用创新(以下简称“信创”)产业生态,在全社会各领域形成示范效应,浙江省经信厅联合省密码管理局开展2023年浙江省深化信创典型案例评选工作。 经过征集申报、专家评选、名单公示等程序,确定36个…

秒懂设计模式--学习笔记(6)【创建篇-建造者模式】

目录 5、建造者模式5.1 介绍5.2 建造步骤的重要性5.3 地产开发商的困惑5.4 建筑施工方5.5 工程总监5.6 项目实施5.7 建造者模式的各角色定义5.8 建造者模式 5、建造者模式 5.1 介绍 建造者模式(Builder)又称为生成器模式,主要用于对复杂对象…

20.呼吸灯:利用PWM控制小灯在相同时间段内的不同占空比

(1)设计一段代码,实现led灯在一秒内由完全熄灭到完全点亮,在第二秒由完全点亮转为完全熄灭,循环往复。 (2)Verilog代码: module breath_led(clk,reset_n,led);input clk;input res…