【Transformer】transformer模型结构学习笔记

news2024/11/23 11:15:37

文章目录

      • 1. transformer架构
      • 2. transformer子层解析
      • 3. transformer注意力机制
      • 4. transformer部分释疑

 

图1 transformer模型架构
图2 transformer主要模块简介
图3 encoder-decoder示意图N=6
图4 encoder-decoder子层示意图

1. transformer架构

  • encoder-decoder框架是一种处理NLP或其他seq2seq转换任务中的常见框架, 机器翻译就是典型的seq2seq模型, 两个seq序列长度可以不相等

  • transformer也是encoder-decoder的总体架构, 如上图。transformer主要由4个部分组成:

    • 输入部分(输入输出嵌入与位置编码)
    • 多层编码器
    • 多层解码器
    • 以及输出部分(输出线性层与softmax)
  • 模块介绍

    • Input Embedding: 输入嵌入。将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系
    • Positional Encoding: 位置编码。为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息
    • Output Embedding: 输出嵌入。将目标文本中的词汇数字表示转换为向量表示
    • Linear: 线性层。将decoder输出的向量转换为最终的输出维度
    • Softmax: softmax层。将线性层的输出转换为概率分布,以便进行最终的预测
    • encoder架构: encoder由6个相同的encoder层组成,每个层包括两个子层:一个多头自注意力层(multi-head self-attention)和一个逐位置的前馈神经网络(point-wise feed-forward network);每个子层后都会使用残差连接(residual connection)和层归一化(layer normalization)连接,即Add&Norm。如下图
    • decoder架构:decoder包含6个相同的decoder层,每层包含3个子层掩码自注意力层masked self-attention),encoder-decoder交叉注意力层逐位置的前馈神经网络。每个子层后都有残差连接层归一化操作,即Add&Norm。如下图

2. transformer子层解析

  • encoder和decoder的本质区别:self-attention的masked掩码机制
  • muitl-head进行masked的目的:在生成文本时,确保模型只依赖已知的信息,而不是未来的内容,对未来信息进行掩码处理,这样才能学会预测
  • multi-head的目的:让模型关注输入的不同部分或者不同信息,比如一个名词的修饰词,一个名词的分类,一个名词对象的情感、诗意等,从直观的到抽象的,捕获复杂的依赖关系
  • Add:残差连接。缓解梯度消失问题;网络输入x与网络输出F(x)相加,求导时相当于添加常数项1,缓解梯度消失问题
  • Norm:层归一化。在每个层上独立进行,使激活值具有相同的均值和方差,通常是0和1;在transformer中,Norm操作通常紧跟在Add之后,对残差连接结果进行归一化,以加速训练并稳定模型性能
  • 前馈网络:对输入进行非线性变换,提取更高级别的特征/信息
  • 逐位前馈神经网络:是一个简单的全连接神经网络,在模型中起到增加非线性和学习更复杂表示的作用。逐位的意思是逐个元素element或点进行独立且相同的操作,不是跨位置或跨元素来进行的。逐位前馈神经网络通常包括两个全连接层一个ReLU激活层,两个全连接层对应两个线性变换,第一个全连接层之后接ReLU激活函数引入非线性,使模型能够学习更复杂的表示。第一个全连接层通常对输入进行增维表示,第二个全连接层降维到模型输出所需的维度

3. transformer注意力机制

  • transformer的3种注意力层:在transformer架构中有3种不同的注意力层
    • self-attention layer自注意力层:编码器输入序列通过multi-head self-attention计算自注意力权重
    • casual attention layer因果自注意力层:解码器的单个序列通过masked multi-head self-attention计算自注意力权重
    • cross attention layer交叉注意力层:编码器-解码器两个序列通过multi-head cross attention进行注意力转移
  • 注意力机制的过程说明
  • 缩放点积注意力

上图是缩放点积注意力示意图,计算公式

其中,softmax内部是注意力分数,softmax整个是注意力权重,乘以缩放因子 1 d k \frac{1}{\sqrt{d_{k} } } dk 1是为了缓解可能的梯度消失问题(softmax值过大时), d k d_{k} dk是Q或者K的维度大小

  • 多头注意力机制

上图是多头注意力机制示意图,多个注意力头并行运行,每个头都会独立地计算注意力权重和输出,这里采用的是缩放点积注意力来计算;

然后将所有头的输出拼接concat起来得到最终的输出;

多头其实是为了提取不同维度的信息,捕获复杂的依赖关系,增强模型的表示能力;最后多个头结果进行拼接,避免单个计算的误差,即避免只关注单方面维度信息的误差

计算公式:

在transformer原文中,head_num = 8,d_k=d_v=64

  • 交叉注意力机制

    • 自注意力机制,QKV都来自同一序列,如下
    • 交叉注意力机制,输入来自两个不同的序列,一个序列用作查询Q(来自decoder states的queries),另一个序列提供键K和值V(来自encoder states的keys和values),实现跨序列的交互和注意力转移,如下
  • 因果注意力机制

    • 为了确保模型在生成序列时只依赖于之前的输入信息,而不会受到未来信息的影响。casual self-attention通过掩码未来位置来实现这一点;使模型在预测某个位置的输出时,只看到该位置及之前的输入。如下图所示
    • 其中掩码未来位置的原因通过下图说明:
    • 掩码机制通过下图说明,加一个很大的负数,softmax之后就是0,如下

4. transformer部分释疑

  • 问题1:transformer相对RNN能处理长序列数据, 同时能进行并行计算, LSTM相对RNN进行改进的, 解决长时依赖问题, 那么transformer相对于LSTM有什么优势
    • (1)LSTM在解决长时依赖仍有局限。LSTM依赖cell state来传递长时信息,限制了其全局信息捕获能力;而transformer的自注意力机制可以考虑任意两个位置之间的依赖关系,能更好的捕捉全局的、长距离的依赖信息
    • (2)transformer的可解释性更强:transformer计算每个位置与所有位置的依赖关系,使得模型的预测结果更易于解释,LSTM的解释性相对较弱
    • (3)并行计算能力:transformer不用像LSTM等待上一时间步的输出作为下一时间步的输入,可以实现完全并行的计算,更容易进行分布式计算和加速
    • (4)扩展性和灵活性:transformer结构相对灵活,可以轻松扩展到更大的数据集和更复杂的任务中

 

  • 问题2:同问题1, transformer通过怎样的设计能够实现并行计算的?

    • 参考这个图,可以并行计算一个位置和其他所有位置的依赖关系
  • 问题3:层归一化Norm和batch normalization的区别

    • 都是归一化,但层归一化不是批量归一化;
    • LN是对每个样本的每个层进行的归一化,即对每个样本的所有特征做归一化;
    • 而BN是对每个batch数据进行归一化,即对batch_size内的每个特征做归一化;
    • LN保留了不同特征之间的大小关系,抹平了不同样本之间的大小关系,所以LN更适合NLP领域任务;
    • 而BN保留了不同样本之间的大小关系,抹平了不同特征之间的大小关系,所以BN更适合于依赖不同样本之间关系的任务,如CV领域
    • LN可以缓解梯度消失问题、改善系统对缩放摆幅变化的鲁棒性、更适用于小样本数据情况
    • 而BN旨在提高模型的训练速度和稳定性,使模型学习效率更高,降低测试错误率和泛化误差

 

  • 问题4:encoder和decoder的本质区别self-attention是否masked,如何理解
    • encoder中每个元素都能管住整个序列中的所有其他元素,生成新的输出表示。处理整个输入序列,不需要掩码未来的信息
    • decoder在生成序列时,只能依赖已经生成的部分,而不能依赖未来的信息。masked处理的是输出序列,将未来位置的注意力权重设置为0,从而限制模型的关注点在已生成的序列上,实现了类似条件语言模型的功能
    • decoder和encoder交叉注意力层,decoder允许关注encoder的输出,从而融合encoder中的信息到生成过程

 

  • 问题5:transformer训练的过程参数有哪些,除了W_Q/K/V这几个参数矩阵以外
    • (1)嵌入维度:输入和输出嵌入的维度,词嵌入和位置编码的维度。比如词嵌入矩阵大小为词汇表大小如50000 * d_词嵌入向量的维度
    • (2)multi-head attention的num_heads:注意力头数,决定模型并行关注输入序列不同部分的能力,每个头都会产生一个独立的注意力权重矩阵。论文中num_heads = 8
    • (3)隐藏层层数:每个encoder层和decoder层都保持一致
    • (4)前馈神经网络隐藏层大小:神经元个数,通常比层数大很多,以便能学习复杂的特征表示
    • (5)encoder和decoder的层数:定义了模型中encoder和decoder各自包含的层数,论文中n_layers = 6,即6个encoder层和6个decoder层
    • (6)位置编码的维度:输入输出序列进入encoder/decoder层时都要进行位置编码,通常与嵌入维度相同,以便和嵌入向量直接相加
    • (7)训练参数:像学习率,选用的优化器,batch_size,epoches等
    • (8)正则化参数:如dropout rate随机失活的神经元比例防止过拟合,L2正则化等
    • (9)权重初始化方法:如随机初始化,Xavier初始化,He初始化等,合理的初始化能加快训练的过程尽快找到最优解

 

  • 问题6:QKV计算的过程,W矩阵都是可以训练的

  • 问题7:self-attention和(cross)attention的区别

    • self-attention设置source=target,即query=key=value,然后计算内部依赖关系

 

  • 问题8:预训练模型BERT和transformer是什么关系
    • BERT(Bidirectional Encoder Representations from Transformers)使用transformer的encoder结构来构建的,输入与transformer类似,包括token/segment/position embedding等,这些embedding将输入文本序列转换为模型可以理解的向量表示;
    • 在BERT中可以选择encoder层的数量,轻量级模型通常使用12层,重量级模型通常使用24层;transformer的自注意力机制使BERT能够关注双向上下文的信息

 

  • 问题9:transformer模型训练的时候采用了什么损失函数
    • transformer训练过程主要采用了交叉熵损失函数(负对数似然损失函数)来衡量模型预测的概率分布真实分布之间的差异,也可以采用KL散度;
    • 并且可以计算向量空间距离MSE,即两组概率向量的空间距离

 


 
创作不易,如有帮助,请 点赞 收藏 支持
 


 

[参考文章]
[1]. transformer注意力机制解析
[2]. Seq2Seq的注意力机制
[3]. attention机制图示
[4]. LN与BN的区别
[5]. Seq2Seq的注意力机制
[6]. transformer的decoder结构
[7]. decoder-only和编解码器区别
[8]. Attention is All You Need翻译
[9]. transformer结构详解,推荐

created by shuaixio, 2024.06.23

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1904957.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

卷积神经网络基础篇

文章目录 1、卷积层1.1、激活函数1.3、sigmoid1.4、Tanh1.5、ReLU1.6、Leaky ReLU1.7、误差计算 2、池化层3、全连接层4、CNN训练 参考链接1 参考链接2 1、卷积层 卷积层(Convolutional layer),这一层就是卷积神经网络最重要的一个层次&…

数据库的学习(4)

一、题目 1、创建数据表qrade: CREATE TABLE grade(id INT NOT NULL,sex CHAR(1),firstname VARCHAR(20)NOT NULL,lastname VARCHAR(20)NOT NULL,english FLOAT,math FLOAT,chinese FLOAT ); 2、向数据表grade中插入几条数据: (3,mAllenwiiliam,88.0,92.0 95.0), (4,m,George&…

java版企业工程管理系统源码:全方位的项目管理解决方案

工程管理系统是一款专注于建设工程项目全生命周期管理的软件。它覆盖了项目从策划、设计、施工到竣工的每一个阶段,提供全方位的管理功能。系统采用模块化设计,包括系统管理、系统设置、项目管理、合同管理、预警管理、竣工管理、质量管理、统计报表和工…

centos7.9 rpm包安装mysql8.2.0数据库、root设置客户端登录、配置并发、表名大小写敏感、启动重启指令等记录

centos安装mysql8数据库,下载的是rpm-bundle.tar包,这样可以在内网环境离线安装,工作中医院的服务器很多也是内网的,所以这里记录下rpm-bundle.tar包安装的步骤。 lscpu 查看处理器是x86还是arm 下载对应的版本 bundle tar包 ((mysql-8.2.0-1.el7.x86_64.rpm-bundle.tar))…

打造属于你的私人云盘:在 OrangePi AIpro 上搭建个人云盘

随着数字化时代的到来,数据的存储和管理变得愈发重要。相比于公共云存储服务,搭建一个属于自己的个人云盘不仅能够更好地保护隐私,还可以更灵活地管理数据。 近期刚好收到了一个 香橙派 AIpro 的开发板,借此机会用来搭建一个属于…

《算法笔记》总结No.4——散列

散列的英文名是hash,即我们常说的哈希~该知识点在王道408考研的教材里面属于查找的范围。即便各位并无深入了解过,也听说过散列是一种更高效的查找方法。 一.引例 先来考虑如下一个假设:设有数组M和N分别如下: M[10][1,2,3,4,5,6…

idea 默认路径修改

1.查看 idea 的安装路径(右键点击 idea 图标,查看路径 ) “C:\Program Files\JetBrains\IntelliJ IDEA 2021.3.1\bin\idea64.exe” 在 bin 目录查看 idea.properties 文件,修改以下四个路径文件 # idea.config.path${user.home}/…

对话大模型Prompt是否需要礼貌点?

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 基于Dify的QA数据集构建(附代码)Qwen-2-7B和GLM-4-9B&#x…

QT入门笔记-自定义控件封装 30

具体代码如下: QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c17# You can make your code fail to compile if it uses deprecated APIs. # In order to do so, uncomment the following line. #DEFINES QT_DISABLE_DEPRECATED_BEFORE0x060000 …

uni-app使用ucharts地图,自定义Tooltip鼠标悬浮显示内容并且根据@getIndex点击事件获取点击的地区下标和地区名

项目场景: uni-app使用ucharts地图,自定义Tooltip鼠标悬浮显示内容并且根据getIndex点击事件获取点击的地区下标和地区名 例如: 问题描述 官方给的文档有限,需要自己下载地图json数据然后自己渲染和编写鼠标悬浮显示内容以及获取点击地址…

【ComfyUI节点】扰动注意力引导Perturbed Attention Guidance

扰动注意力引导 Perturbed Attention Guidance GitHub - KU-CVLAB/Perturbed-Attention-Guidance: Official implementation of "Perturbed-Attention Guidance" 按照官方介绍,扰动注意力指导显著提高了扩散模型的样本质量,而无需外部条件&am…

代码随想录第45天|动态规划

300.最长递增子序列 参考 dp[i] 表示以 i 为结尾的最长递增子序列长度递推公式: 使用 i 和 j 判断 dp[i] max(dp[j] 1, dp[i])每次 j 都需要从头遍历 初始化: dp[i] 1 class Solution { public:int lengthOfLIS(vector<int>& nums) {vector<int> dp(nums…

鸿蒙开发:Universal Keystore Kit(密钥管理服务)【明文导入密钥(C/C++)】

明文导入密钥(C/C) 以明文导入ECC密钥为例。具体的场景介绍及支持的算法规格 在CMake脚本中链接相关动态库 target_link_libraries(entry PUBLIC libhuks_ndk.z.so)开发步骤 指定密钥别名keyAlias。 密钥别名的最大长度为64字节。 封装密钥属性集和密钥材料。通过[OH_Huks_I…

实现antd designable平台的组件拖拽功能

平台&#xff1a;designable设计器 github&#xff1a;designable 目录 1 背景2 技术栈3 组件拖拽和放置3.1 类型定义3.2 拖拽3.3 放置 1 背景 由于业务需求&#xff0c;我们需要实现designable平台的一个简易版的组件拖拽功能。 #mermaid-svg-QrxSDGe9YyGG3LbQ {font-family:…

andboxie-Plus - 知名沙盒软件、支持游戏多开测试软件

我们经常会需要用到一些毒瘤软件——它们可能不是真正的恶意软件&#xff0c;但总爱偷摸干一些流氓行为。 工作中&#xff0c;有时还不得不安装使用一些来路不明、不能完全信任的可疑软件。 装上吧&#xff0c;心里膈应、难受&#xff1b;不装吧&#xff0c;有些工作又进行不…

SQLite 嵌入式数据库

目录&#xff1a; 一、SQLite 简介二、SQLite 数据库安装1、安装方式一&#xff1a;2、安装方式二&#xff1a; 三、SQLite 的命令用法1、创建、打开、退出数据库&#xff1a;2、编辑数据库&#xff1a; 四、SQLite 的编程操作1、打开 / 创建数据库的 C 接口&#xff1a;2、操作…

【数据结构与算法】快速排序双指针法

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法》 期待您的关注 ​

工程文件参考——CubeMX+LL库+SPI主机 阻塞式通用库

文章目录 前言CubeMX配置SPI驱动实现spi_driver.hspi_driver.c 额外的接口补充 前言 SPI&#xff0c;想了很久没想明白其DMA或者IT比较好用的方法&#xff0c;可能之后也会写一个 我个人使用场景大数据流不多&#xff0c;如果是大批量数据交互自然是DMA更好用&#xff0c;但考…

【Java12】封装

封装&#xff08;Encapsulation&#xff09;是面向对象的三大特征之一&#xff08;另两个是继承和多态&#xff09;&#xff0c;指的是将对象的状态信息隐藏在对象内部&#xff0c;不允许外部程序直接访问对象的内部信息&#xff0c;而是通过该类所提供的方法来实现对内部信息的…

期末成绩老师怎么发?

期末考试的钟声终于敲响&#xff0c;学生们紧张而期待地等待着成绩的揭晓。而作为老师&#xff0c;我们面临的不仅仅是成绩的评判&#xff0c;还有一项看似简单却极其繁琐的任务——将成绩单一一私信给每位学生的家长。在成绩公布的那一刻&#xff0c;我们不仅要确保每一份成绩…