Linux——进程间通信一(共享内存、管道、systrem V)

news2024/11/26 4:48:19

一、进程间通信介绍

1.1、进程间通信的概念和意义

进程间通信(IPC interprocess communication)是一组编程接口,让不同进程之间相互传递、交换信息(让不同的进程看到同一份资源)

数据传输:一个进程需要将它的数据发送给另外一个进程

资源共享:多个进程之间共享同样的资源

通知事件:一个进程向另一个或一组发送消息

进程控制:有些进程希望完全控制另一个进程的执行

为什么要进行进程间通信?

以上的行为往往需要多个进程协同、共同完成一些事情

两个进程之间是不能进行”数据”的直接传递的(进程具有独立性)

不要以为,进程独立了就是彻底独立,有时我们需要双方能够进行一定程序的信息交互。

1.2、如何进行进程间通讯及其本质

怎么办?

一般规律

1、交换数据的空间(内存)

2、不能由通信双方任何一个提供(那由谁提供,OS提供) 

具体做法

OS提供的"空间"有不同的样式,就决定了有不同的通信方式

1、管道(匿名、命名)

2、共享内存

3、消息队列
4、信号量

进程间通信的本质:让不同的进程看到同一份资源(一般由OS提供)

为了进程在通信的时候,既能满足进程之间的独立性,又能够到达通信的目的,那么进程之间通信的地点就不能在两个进程中。 一个进程将自己的数据交给另一个进程,并且还要等待另一个进程的应答,这样一来,这个进程将不独立了,受到了另一个进程的影响,这就与进程的独立性矛盾。所以,两个进程进行通信的地点必须是由第三方提供的,第三方只能是操作系统。操作系统提供的这个地点被我们称为:公共资源。公共资源有了,还必须让要通信的进程都看到这一份公共资源,此时要通信的进程将有了通信的前提。之后就是进程通信,也就是访问这块公共资源的数据。

之所以有不同的通信方式,是因为公共资源的种类不一,如果公共资源是一块内存,那么通信方式就叫做共享内存,如果公共资源是一个文件,也就是struct file结构体,那么就叫做管道。

二、管道 

2.1管道介绍

什么是管道?

open("log.txt",w);
open("log.txt",r);

一个文件打开两次,那么在操作系统中会有2个struct file 但是这两个struct file指向同一个缓冲区 

 若父进程3为读端,4为写端,子进程也一样。那么子进程写入,父进程读取缓冲区内容,这是父子进程看到了同一块资源。

这种基于文件的,让不同进程看到同一份资源的通信方式叫做管道

管道只能被设计成单向通信 

如:子进程为写(writer,关掉读端)                                                父进程为读(reader,关掉写端)    当子进程关掉读端/父进程关掉写端对应的struct file没有释放掉,说明 struct file有引用计数(记录多少指针指向我) 当引用计数为0才释放。struct file是允许多个进程通过指针指向的。

为什么父进程最开始用rw方式打开同一个文件呢?                                                                            如果只以r方式打开的话,子进程拷贝完后就也是r;父进程只以w打开,子进程拷贝完也只是w

3.2匿名管道

匿名管道:就是没有名字的文件

如何让不同的进程看到同一份资源?匿名管道的解决办法是:创建子进程,继承父进程的属性信息,也就是说匿名管道可以(只能)进行具有血缘关系的进程进行进程间通信(常用于父子)

为了支持我们进行管道通信,OS提供系统调用pipe()

原型:int pipe(int fd[2]);

头文件unistd.h
功能:创建一无名管道
参数          fd:文件描述符数组,其中fd[0]表示读端, fd[1]表示写端
返回值:成功返回0,失败返回错误代码 

3.3匿名管道代码

通过系统调用接口创建一个匿名管道

#include <iostream>
#include <cerrno>
#include <cstring>
#include <unistd.h>
 
using namespace std;
 
int main()
{
    int pipefd[2];
    int ret = pipe(pipefd); // 一.创建管道
    if(ret < 0)
    {
        cerr << errno << ": " << strerror(errno) << endl;
    }
    cout << "pipefd[0]: " << pipefd[0] << endl; // 3
    cout << "pipefd[1]: " << pipefd[1] << endl; // 4
 
    return 0;
}

然后就可以创建子进程,关闭不需要的读端或写端

#include <iostream>
#include <cerrno>
#include <cstring>
#include <unistd.h>
 
using namespace std;

int main()
{
    int pipefd[2];
    int ret = pipe(pipefd); // 一.创建管道
    if(ret < 0)
    {
        cerr << errno << ": " << strerror(errno) << endl;
    }
    pid_t id = fork(); // 二.创建子进程
    assert(id != -1);
    if(id == 0)
    {
        //子进程  关掉读端,只写
        close(pipefd[0]);
        
        exit(1);
    }

    //父进程
    //关掉写端,只读
    close(pipefd[1]);
    
    close(pipefd[0]); // 父进程,只写,关闭读
 
    return 0;
}

这时父子进程已经可以看到同一份资源,可以开始通信了

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<unistd.h>
#include<sys/types.h>
#include<sys/wait.h>
#include<assert.h>

void writer(int wfd)
{
    const char* str = "我是子进程,o.O,我在给你发消息";
    char buffer[128];
    int cnt = 0;
    pid_t pid = getpid();
    while(1)
    {
        snprintf(buffer,sizeof(buffer),"message:%s,pid:%d,count:%d\n",str,pid,cnt);
        write(wfd, buffer, strlen(buffer));
        cnt++;
        sleep(1);
    }
    close(wfd);
}

void reader(int rfd)
{
    char buffer[1024];
    int cnt = 10;
    while(1)
    {
        size_t n = read(rfd,buffer,sizeof(buffer)-1);
        if(n>0)
            printf("父亲获得信息是: %s\n", buffer);
        else
        {
            printf("缓冲区读完了,文件也读完了\n");
            break;
        }
        cnt--;
        if(cnt==0)
            break;
    }
    close(rfd);
}


int main()
{
    //创建管道
    int pipefd[2];
    int n = pipe(pipefd);
    if(n<0)
        return 1;
    pid_t id = fork();

    if(id == 0)
    {
        //子进程  关掉读端,只写
        close(pipefd[0]);
        writer(pipefd[1]);
        exit(1);
    }

    //父进程
    //关掉写端,只读
    close(pipefd[1]);
    reader(pipefd[0]);
    int status = 0;
    pid_t rid = waitpid(id, &status, 0);
    if(rid == id)
        printf("退出码为:%d,信号为:%d\n",WEXITSTATUS(status), status & 0x7f);

    return 0;
}

匿名管道的一些读写现象以及对应的特性

按上面代码将子进程休眠上5s,那么在子进程休眠这段时间,父进程在等待子进程退出休眠(可以理解为管道内无数据)

写端一直写,读端一直不读或者很久读一次:若一次写入一个字符"A",每次写入时cnt++,执行后会发现当cnt=65536时不在写入(也就是写入65536个字节时)65536÷1024=64

在Ubuntu20.04操作系统下默认建立的管道大小为64KB;

管道内部被写满,父进程还没有读取的时候,那子进程要等到父进程来读它

对以上两种情况的总结:

1.管道内部没有数据且子进程不关闭自己的写端文件fd,读端就要阻塞等待直到pipe有数据

2.管道内部被写满且读端不关闭自己的fd,写端写满后就要阻塞等待

由此推断出管道的两种特性:

特性一:自带同步机制

特性二:血缘关系进程进行通信,常见父子

若把父进程休眠时间改短一点,每次父进程读完后,子进程又能继续写入,在此过程中我们不难发现:无论写端写多少个,读端都能一次读完,由此我们发现管道的另一个特性:

特性三:管道是面向字节流的(写多少次和读多少次没有直接关系,称为面向字节流)

当子进程写入10s后退出,而父进程一直读,且打印了返回值,10s后子进程关掉写文件描述符,此时返回值为0;若父进程退出,子进程会僵尸 

3.对于写端而言,不写且关闭pipe,读端会将管道中的数据读完,返回值为0,表示读结束,类是读到了文件的结尾

若写端一直在写,而读端读一会就结束,关闭读文件描述符

4.读端不读且关闭,写端在写,OS会直接终止写入的进程(通过信号13SIGPIPE杀死进程)

由此可以得出管道另外的特性

特性四:父子进程退出,管道自动释放,文件的生命周期是随进程的

特性五:管道只能单向通信,半双工的一种特殊情况(一方传信息时,另一方不能传,如:对讲机)

 5.当要写入的数据量不大于PIPE_BUF(4KB)时,linux将保证写入的原子性。
6.当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。

就是写入数据小于4kb,则次操作为安全的 

有时候公共资源有可能被两个执行流共同访问,访问时会出现信息交叉、数据混乱等问题;由此我们要有一种特性:一段数据、一块空间或一种资源我们要么不访问、要访问就把它改完了,这种特性叫原子性。

3.3进程池

processpool.cc

#include <iostream>
#include <string>
#include <cstdlib>
#include <vector>
#include <unistd.h>
#include <ctime>
#include "task.hpp"

using namespace std;


enum
{
    UsageError= 1,
    ArgError,
    PipeError
};
void Usage(const std::string &proc)
{
    cout<<"Usage:"<<proc<<"sub_process_num"<<endl;
}
//用一个类封装管道
class Channel
{
public:
    Channel(int wfd,pid_t sub_id,const std::string &name)//构造
        :_wfd(wfd)
        ,_sub_process_id(sub_id)
        ,_name(name)
        {}
    void PrintDebug()
    {
        cout << "_wfd: " << _wfd;
        cout << ",_sub_process_id: " << _sub_process_id;
        cout << ", _name: " << _name << endl;
    }
    string name() {return _name;}
    int wfd() {return _wfd;}
    pid_t pid() { return _sub_process_id; }
    ~Channel()//析构
    {
    }

private:
    int _wfd;//父进程通过此向channel写东西
    pid_t _sub_process_id;//记录子进程
    string _name;//channel名字
};

//将冗长的创建子进程封装一下
class ProcessPool
{
public:
    ProcessPool(int sub_process_num) //构造
        : _sub_process_num(sub_process_num)
    {}
    int CreateProcess(work_t work) // 回调函数
    {
        for (int number = 0; number < _sub_process_num; number++)
        {
            int pipefd[2]{0};
            int n = pipe(pipefd);
            if (n < 0)
                return PipeError;

            pid_t id = fork();
            if (id == 0)
            {
                // child -> r
                close(pipefd[1]);
                // 执行任务
                dup2(pipefd[0], 0);
                work();
                exit(0);
            }
            string cname = "channel-" + to_string(number);
            // father
            close(pipefd[0]);
            channels.push_back(Channel(pipefd[1], id, cname));
        }
        return 0;
    }
    int NextChannel()
    {
        static int next = 0;
        int c = next;
        next++;
        next %= channels.size();
        return c;
    }
    void SendTaskCode(int index, uint32_t code)
    {
        cout << "send code: " << code << " to " << channels[index].name() << " sub prorcess id: " <<  channels[index].pid() << endl;
        write(channels[index].wfd(), &code, sizeof(code));
    }
    void Debug()
    {
        for (auto &channel : channels)
        {
            channel.PrintDebug();
        }
    }
    ~ProcessPool()
    {
    }

private:
    int _sub_process_num;
    vector<Channel> channels;
};


int main(int argc ,char* argv[])
{
    if(argc!=2)
    {
        Usage(argv[0]);
        return UsageError;
    }

    int sub_process_num = std::stoi(argv[1]);//把进程数转整型
    if(sub_process_num == 0)
        return ArgError;

    //vector<Channel> channels;
    //把所有的channel(管道)push到vector中,那么对管道的管理就会变成对vector的增删查改
    //create process
    // for(int num=0;num<sub_process_num;num++)
    // {
    //     int pipefd[2]{0};
    //     int n = pipe(pipefd);
    //     if(n<0)
    //         return PipeError;
    //     pid_t id = fork();
    //     if(id == 0)//子进程
    //     {
    //         close(pipefd[1]);
    //         sleep(1);
    //         exit(0);
    //     }
    //     string cname = "channel-"+to_string(num);
    //     //父进程
    //     close(pipefd[0]);
    //     channels.push_back(Channel(pipefd[1],id,cname));
    // }
    ProcessPool *proc_ptr = new ProcessPool(sub_process_num);
    proc_ptr->CreateProcess(worker);
    //控制子进程
    // for(auto& e:channels)
    // {
    //     e.PrintDebug();
    // }
    while(1)
    {
        // a. 选择一个进程和通道
        int channel = proc_ptr->NextChannel();
        // cout << channel.name() << endl;

        // b. 你要选择一个任务
        uint32_t code = NextTask();

        // c. 发送任务
        proc_ptr->SendTaskCode(channel, code);

        sleep(1);
    }

    //回收、等待子进程
    delete proc_ptr;
    return 0;
}

task.hpp

#include <iostream>
#include <unistd.h>

using namespace std;

typedef void(*work_t)();  //函数指针类型
typedef void(*task_t)();  //函数指针类型

void PrintLog()
{
    cout << "printf log task" << endl;
}

void ReloadConf()
{
    cout << "reload conf task" << endl;
}

void ConnectMysql()
{
    cout << "connect mysql task" << endl;
}

task_t tasks[3] = {PrintLog, ReloadConf, ConnectMysql};

uint32_t NextTask()
{
    return rand() % 3;
}

void worker()
{
    // 从0中读取任务即可!
    while(true)
    {
        uint32_t command_code = 0;
        ssize_t n = read(0, &command_code, sizeof(command_code));
        if(n == sizeof(command_code))
        {
            if(command_code >= 3) continue;
            tasks[command_code]();
        }
        cout << "I am worker: " << getpid() << endl;
        sleep(1);
    }
}

makefile

processpool:processpool.cc
	g++ -o $@ $^ -std=c++11 -g
.PHONY:clean
clean:
	rm -f processpool

三、命名管道

管道应用的一个限制就是只能在具有共同祖先(具有亲缘关系)的进程间通信。
如果我们想在不相关的进程之间交换数据,可以使用FIFO文件来做这项工作,它经常被称为命名管道。
命名管道是一种特殊类型的文件

man mkfifo:

指令:mkfifo 文件名

功能:创建命名管道文件

命名管道可以从命令行上创建,命令行方法是使用下面这个命令

mkfifo filename

此时就成功地建立了一个命名管道,可以发现它的(文件类型)权限前面的字母是p(pipe),而目录的文件类型是d(directory)。命名管道文件类型是p,而且该文件还有inode,说明在磁盘上是真实存在的。 

 当磁盘中有了命名管道文件以后,两个进程将可以通过这个管道文件进行通信了,步骤和匿名管道非常相似。一个进程以写方式打开管道文件,另一个进程以读端方式打开管道文件。

直接写入的话可以发现会阻塞在这里

它需要被另一个进程读取 

 可以通过unlink或者rm删掉命名管道

系统调用mkfifo以及unlink

第一个形参:管道文件的名字

第二个形参:创建管道文件的权限

返回值:0表示创建成功,-1表示创建失败。

man 2 unlink 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

webGL可用的14种3D文件格式,但要具体问题具体分析。

hello&#xff0c;我威斯数据&#xff0c;你在网上看到的各种炫酷的3d交互效果&#xff0c;背后都必须有三维文件支撑&#xff0c;就好比你网页的时候&#xff0c;得有设计稿源文件一样。WebGL是一种基于OpenGL ES 2.0标准的3D图形库&#xff0c;可以在网页上实现硬件加速的3D图…

世界人工智能大会中“数据+标注”相关的关键词浅析

标注猿的第79篇原创 一个用数据视角看AI世界的标注猿 大家好&#xff0c;我是AI数据标注猿刘吉&#xff0c;一个用数据视角看AI世界的标注猿。 在国家级数据标注基地建设任务下发后的两个月时间里&#xff0c;全国各地政府、各个高校都快速行动了起来&#xff0c;数据行…

【Linux】压缩命令——gzip,bzip2,xz

1.压缩文件的用途与技术 你是否有过文件太大&#xff0c;导致无法以正常的E-mail方式发送&#xff1f;又或学校、厂商要求使用CD或DVD来做数据归档之用&#xff0c;但是你的单一文件却都比这些传统的一次性存储媒介还要大&#xff0c;那怎么分成多块来刻录&#xff1f;还有&am…

局部静态变量实现的单例存在多个对象

文章目录 背景测试代码运行测试尝试打开编译器优化进一步分析 背景 业务中出现日志打印失效&#xff0c;发现是因为管理日志对象的单例在运行过程中存在了多例的情况。下面通过还原业务场景来分析该问题。 测试代码 /* A.h */ #ifndef CALSS_A #define CALSS_A#include <…

Docker 容器网络及其配置说明

Docker 容器网络及其配置说明 docker容器网络docker的4种网络模式bridge 模式container模式host 模式none 模式应用场景 docker 容器网络配置Linux 内核实现名称空间的创建创建 Network Namespace操作 Network Namespace 转移设备veth pair创建 veth pair实现 Network Namespac…

nature methods | 11种空间转录组学技术的系统性比较

—DOI: 10.1038/s41592-024-02325-3 Systematic comparison of sequencing-based spatial transcriptomic methods 学习了一下空间转录组技术怎么做benchmark&#xff0c;从多个的角度去考虑目前技术的性能&#xff0c;受益良多。但该研究缺少对10X Visium HD的测评&#xff…

mac怎么压缩pdf文件大小,mac压缩pdf文件大小不改变清晰度

在数字化时代&#xff0c;pdf格式因其良好的兼容性和稳定性&#xff0c;成为了文档分享和传输的首选。然而&#xff0c;随着文件内容的丰富&#xff0c;pdf文件的体积也越来越大&#xff0c;给存储和传输带来了不小的困扰。本文将揭秘几种简单有效的pdf文件压缩方法&#xff0c…

python爬虫入门(一)之HTTP请求和响应

一、爬虫的三个步骤&#xff08;要学习的内容&#xff09; 1、获取网页内容 &#xff08;HTTP请求、Requests库&#xff09; 2、解析网页内容 &#xff08;HTML网页结构、Beautiful Soup库&#xff09; 3、存储或分析数据 b站学习链接&#xff1a; 【【Python爬虫】爆肝两…

Vue3基础知识:组合式API中的provide和inject,他们作用是什么?如何使用?以及案例演示

1.provide和inject相较于父子传递的不同在于provide,inject可以用于跨层级通信&#xff08;通俗易懂的讲就是可以实现爷孙之间的直接信息传递&#xff09;。 1.跨层级传递数据 1.在顶层组件通过provide函数提供数据 2.底层组件通过inject函数获取数据 演示一&#xff1a;跨…

vCenter登录失败报500错误:no healthy upstream

过了个周末登录vCenter的时候提示&#xff1a;HTTP状态500 - 内部服务器错误&#xff1b;重启服务后提示&#xff1a;no healthy upstream。如下图&#xff1a; 看到这个情况&#xff0c;肯定就是部分不服务异常了或者压根就没有启动。至于说因为啥异常还不得而知。想着登录管理…

MSPM0G3507——串口0从数据线传输变为IO口传输

默认的跳线帽时这样的&#xff0c;这样时是数据线传输 需要改成这样&#xff0c;即可用IO口进行数据传输

Spring IOC基于XML和注解管理Bean

IoC 是 Inversion of Control 的简写&#xff0c;译为“ 控制反转 ”&#xff0c;它不是一门技术&#xff0c;而是一种设计思想&#xff0c;是一个重要的面向对象编程法则&#xff0c;能够指导我们如何设计出 松耦合、更优良的程序。 Spring 通过 IoC 容器来管理所有 Java 对象…

【国产AI绘图】快手把“可图”大模型开源了,这是一款支持中文的SDXL模型

Kolors 是由 Kuaishou Kolors 团队&#xff08;快手可图&#xff09;开发的基于潜在扩散的大规模文本到图像生成模型。经过数十亿对文本图像的训练&#xff0c;Kolors 在视觉质量、复杂语义的准确性以及中英文字符的文本渲染方面&#xff0c;与开源和专有模型相比都具有显著优势…

【LInux】从动态库的加载深入理解页表机制

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

YOLOv8改进---BiFPN特征融合

一、BiFPN原理 1.1 基本原理 BiFPN&#xff08;Bidirectional Feature Pyramid Network&#xff09;&#xff0c;双向特征金字塔网络是一种高效的多尺度特征融合网络&#xff0c;其基本原理概括分为以下几点&#xff1a; 双向特征融合&#xff1a;BiFPN允许特征在自顶向下和自…

DAY21-力扣刷题

1.买卖股票的最佳时机 121. 买卖股票的最佳时机 - 力扣&#xff08;LeetCode&#xff09; class Solution {public int maxProfit(int[] prices) {int minpriceInteger.MAX_VALUE;int maxprofit0;for(int i0;i<prices.length;i){if(prices[i]<minprice){minpriceprices[…

【面试八股文】java基础知识

引言 本文是java面试时的一些常见知识点总结归纳和一些拓展&#xff0c;笔者在学习这些内容时&#xff0c;特地整理记录下来&#xff0c;以供大家学习共勉。 一、数据类型 1.1 为什么要设计封装类&#xff0c;Integer和int区别是什么&#xff1f; 使用封装类的目的 对象化:…

Webpack安装以及快速入门

3 Webpack 1 什么是Webpack https://webpack.js.org/ (官网) webpack 是一个现代 javascript 应用程序的 静态模块打包器 (module bundler) 待会要学的 vue-cli 脚手架环境, 集成了 webpack, 所以才能对各类文件进行打包处理 webpack是一个 静态模块 打包器,可以做以下的这…

数据自动备份方法分享!

现在很多朋友对于第三方软件颇为青睐&#xff0c;因为它们具备许多电脑自带备份工具所不具备的功能。例如&#xff0c;自动备份数据的需求。尽管你已经备份了电脑数据&#xff0c;但日常使用中数据常会增加&#xff0c;你可能无暇顾及每天的备份工作。因此&#xff0c;使用数据…

C++ 引用做函数返回值

作用&#xff1a;引用是可以作为函数的返回值存在的 注意&#xff1a;不要返回局部变量引用 用法&#xff1a;函数调用作为左值 示例&#xff1a; 运行结果&#xff1a;