摸鱼大数据——Spark SQL——基本介绍和入门案例

news2024/11/27 23:40:20

Spark SQL 基本介绍

1、什么是Spark SQL

Spark SQL是Spark多种组件中其中一个,主要是用于处理大规模的【结构化数据】

 什么是结构化数据: 一份数据, 每一行都有固定的列, 每一列的类型都是一致的 我们将这样的数据称为结构化的数据
 例如: mysql的表数据
     1 张三 20
     2 李四 15
     3 王五 18
     4 赵六 12

为什么要学习Spark SQL呢?

 1- 会 SQL的人, 一定比会大数据的人多
 2- Spark SQL 既可以编写SQL语句, 也可以编写代码, 甚至可以混合使用
 3- Spark SQL 可以 和 HIVE进行集成, 集成后, 可以替换掉HIVE原有MR的执行引擎, 提升效率

Spark SQL特点:

 1- 融合性: 既可以使用标准SQL语言, 也可以编写代码, 同时支持混合使用
 ​
 2- 统一的数据访问: 可以通过统一的API来对接不同的数据源
 ​
 3- HIVE的兼容性: Spark SQL可以和HIVE进行整合, 整合后替换执行引擎为Spark, 核心: 基于HIVE的metastore来处理
 ​
 4- 标准化连接: Spark SQL也是支持 JDBC/ODBC的连接方式

2、Spark SQL 与 HIVE异同

相同点:

 1- 都是分布式SQL计算引擎
 2- 都可以处理大规模的结构化数据
 3- 都可以建立Yarn集群之上运行

不同点:

 1- Spark SQL是基于内存计算, 而HIVE SQL是基于磁盘进行计算的
 2- Spark SQL没有元数据管理服务(自己维护), 而HIVE SQL是有metastore的元数据管理服务的
 3- Spark SQL底层执行Spark RDD程序, 而HIVE SQL底层执行是MapReduce
 4- Spark SQL可以编写SQL也可以编写代码,但是HIVE SQL仅能编写SQL语句

3、Spark SQL的数据结构对比

说明:
    pandas的DataFrame: 二维表  处理单机结构数据
    SparkCore的RDD: 处理任何的数据结构   处理大规模的分布式数据
    SparkSQL的DataFrame: 二维表  处理大规模的分布式结构数据

 RDD(Resilient Distributed Dataset)是Spark中最基本的抽象,代表了一个不可变、分布式的数据集合。RDD支持并行操作,可以在集群中的多个节点上进行处理。RDD具有容错性,即使在节点故障时也能够自动恢复。但是RDD只提供了基本的功能,对于结构化数据的处理能力有限。
 ​
 DataFrame是Spark SQL中的一个概念,它是一种以列为主的分布式数据集合,类似于关系型数据库中的表格。DataFrame具有数据结构化的特点,每一列都有相应的数据类型,而且可以使用SQL语句进行查询和操作。DataFrame也支持大部分RDD的操作,但是在处理结构化数据方面更加方便。
 ​
 DataSet是Spark 2.0引入的一种新的API,它是DataFrame的一个扩展,提供了类型安全的数据操作。DataSet在编译时检查数据类型,可以避免一些运行时的错误。与DataFrame相比,DataSet更加适用于需要强类型支持的场景,但是在灵活性和易用性方面可能略逊于DataFrame。
 ​
 ​
 由于Python不支持泛型, 所以无法使用Dataset类型, 客户端仅支持DataFrame类型

Spark SQL的入门案例

SparkSession 和 SparkContext 是 Apache Spark 中两个重要的组件,它们在 Spark 应用程序中扮演着不同的角色。

SparkContext:
        SparkContext 是 Spark 1.x 版本中最重要的入口点,在 Spark 2.x 版本中,它已经被 SparkSession 取代,但在一些旧的代码和文档中仍然可能会看到它的存在。
        SparkContext 是 Spark 应用程序与 Spark 集群通信的主要入口点。它负责与集群管理器(如 YARN、Mesos 或 Spark 自带的 Standalone)通信,以便分配资源和执行任务。
        SparkContext 提供了创建 RDD(弹性分布式数据集)的功能,RDD 是 Spark 中基本的数据抽象,代表了分布在集群中的不可变的数据集。
        

SparkSession:
        在 Spark 2.x 中,SparkSession 被引入来取代 SparkContext,并提供了更多功能和简化的 API。,它是 Spark 应用程序中的入口点,封装了 SparkContext。
        SparkSession 提供了一种统一的入口点,用于读取数据、执行查询、进行数据处理等各种 Spark 任务。
        SparkSession 提供了 DataFrame 和 Dataset API,这两种 API 提供了更高级别、更易于使用的抽象,用于处理结构化数据。
        与 SparkContext 不同,SparkSession 可以与 Hive 集成,允许在 Spark 应用程序中执行 SQL 查询,并访问 Hive 中的表和数据。

总之,SparkContext 是 Spark 1.x 版本中的主要入口点,负责与集群通信和管理资源,而 SparkSession 是 Spark 2.x 中的主要入口点,提供了更多的功能和简化的 API,用于执行各种 Spark 任务,并且可以与 Hive 集成。还可以通过SparkSession对象还是可以得到SparkContext对象。
 

入门体验

 # 导包
 import os
 from pyspark.sql import SparkSession
 ​
 # 绑定指定的python解释器
 ​
 os.environ['SPARK_HOME'] = '/export/server/spark'
 os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
 os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'
 ​
 # 创建main函数
 if __name__ == '__main__':
     # 1.创建SparkContext对象
     spark = SparkSession.builder.appName('pyspark_demo').master('local[*]').getOrCreate()
     sc = spark.sparkContext
     # print(spark,type(spark))
     # print(sc,type(sc))
 ​
     # 2.验证是否能生成rdd
     textRDD = sc.textFile('file:///export/data/spark_project/spark_sql/data/uniqlo.csv')
     # collect: 搜集数据触发任务展示数据  count:获取数据条数  type:查看类型
     # print(textRDD.collect())
     print(textRDD.count())
     print(type(textRDD)) # <class 'pyspark.rdd.RDD'>
 ​
     # 验证是否能生成DataFrame
     df = spark.read.csv('file:///export/data/spark_project/spark_sql/data/uniqlo.csv')
     # show: 展示数据  count:获取数据条数  type:查看类型
     # print(df.show())
     print(df.count())
     print(type(df)) # <class 'pyspark.sql.dataframe.DataFrame'>
 ​
     # 3.关闭资源
     sc.stop()
     spark.stop()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903016.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

筛选Github上的一些优质项目

每个项目旁都有标签说明其特点&#xff0c;如今日热捧、多模态、收入生成、机器人、大型语言模型等。 项目涵盖了不同的编程语言和领域&#xff0c;包括人工智能、语言模型、网页数据采集、聊天机器人、语音合成、AI 代理工具集、语音转录、大型语言模型、DevOps、本地文件共享…

考虑数据库粒度的设计-提升效率

目录 概要 场景 设计思路 小结 概要 公开的资料显示&#xff0c;数据库粒度是&#xff1a;“在数据库领域&#xff0c;特别是数据仓库的设计中&#xff0c;粒度是一个核心概念&#xff0c;它直接影响到数据分析的准确性和存储效率。粒度的设定涉及到数据的详细程度和精度&…

哈弗架构和冯诺伊曼架构

文章目录 1. 计算机体系结构 2. 哈弗架构&#xff08;Harvard Architecture&#xff09; 3. 改进的哈弗架构 4. 冯诺伊曼架构&#xff08;Von Neumann Architecture&#xff09; 5. 结构对比 1. 计算机体系结构 计算机体系结构是指计算机系统的组织和实现方式&#xff0c…

Tabu Search — 温和介绍

Tabu Search — 温和介绍 目录 Tabu Search — 温和介绍 一、说明 二、什么是禁忌搜索以及我可以在哪里使用它&#xff1f; 三、禁忌搜索原则 四、短期记忆和积极搜索&#xff1a; 五、举例时间 六、结论&#xff1a; 七、参考&#xff1a; 一、说明 最近&#xff0c;我参加了…

《向量数据库指南》——Milvus Cloud检索器增强的深度探讨:句子窗口检索与元数据过滤

检索器增强的深度探讨&#xff1a;句子窗口检索与元数据过滤 在信息爆炸的时代&#xff0c;高效的检索系统成为了连接用户与海量数据的关键桥梁。为了进一步提升检索的准确性和用户满意度&#xff0c;检索器增强技术应运而生&#xff0c;其中句子窗口检索与元数据过滤作为两大…

coco数据集格式计算mAP的python脚本

目录 背景说明COCOeval 计算mAPtxt文件转换为coco json 格式自定义数据集标注 背景说明 在完成YOLOv5模型移植&#xff0c;运行在板端后&#xff0c;通常需要衡量板端运行的mAP。 一般需要两个步骤 步骤一&#xff1a;在板端批量运行得到目标检测结果&#xff0c;可保存为yol…

Django文档简化版——Django快速入门——创建一个基本的投票应用程序(3)

续上一篇&#xff0c;这一篇 着重于创建公共接口——“视图” 第三部分——3、视图和模板 1、概述2、编写更多视图原理——django依次访问了什么文件 3、写一个真正有用的视图一个快捷函数 render() render——渲染 4、抛出404错误一个快捷函数 get_object_or_404() 5、使用模…

【零基础】学JS

喝下这碗鸡汤 “知识就是力量。” - 弗朗西斯培根 1.三元运算符 目标:能利用三元运算符执行满足条件的语句 使用场景:其实是比if双分支更简单的写法&#xff0c;可以使用三元表达式 语法&#xff1a;条件 ? 满足条件的执行代码 : 不满足条件执行的代码 接下来用一个小案例来展…

英语学习交流小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;每日打卡管理&#xff0c;备忘录管理&#xff0c;学习计划管理&#xff0c;学习资源管理&#xff0c;论坛交流 微信端账号功能包括&#xff1a;系统首页&#xff0c;学习资源&…

AI周报(6.30-7.6)

AI应用-AI控制F16战机与人类飞行员狗斗 2024年美国国防部领导下的国防部高级研究计划局&#xff08;DARPA&#xff09;宣布&#xff0c;世界上首次人工智能&#xff08;AI&#xff09;驾驶的战斗机与人类驾驶的战斗机之间的空战&#xff0c;于去年秋季在加利福尼亚州爱德华兹空…

平台稳定性里程碑 | Android 15 Beta 3 已发布

作者 / 产品管理副总裁、Android 开发者 Matthew McCullough 从近期发布的 Beta 3 开始&#xff0c;Android 15 达成了平台稳定性里程碑版本&#xff0c;这意味着开发者 API 和所有面向应用的行为都已是最终版本&#xff0c;您可以查阅它们并将其集成到您的应用中&#xff0c;并…

并口、串口和GPIO口区别

并口 并行接口,简称并口。并口采用的是25针D形接头。所谓“并行”,是指8位数据同时通过并行线进行传送,这样数据传送速度大大提高,但并行传送的线路长度受到限制,因为长度增加,干扰就会增加,数据也就容易出错,目前,并行接口主要作为打印机端口等。 并口的工作模式 …

【小沐学Python】在线web数据可视化Python库:Bokeh

文章目录 1、简介2、安装3、测试3.1 创建折线图3.2 添加和自定义渲染器3.3 添加图例、文本和批注3.4 自定义您的绘图3.5 矢量化字形属性3.6 合并绘图3.7 显示和导出3.8 提供和筛选数据3.9 使用小部件3.10 嵌入Bokeh图表到Flask应用程序 结语 1、简介 https://bokeh.org/ https…

JVM原理(二十):JVM虚拟机内存的三特性详解

1. 原子性、可进行、有序性 1.1. 原子性 Java内存模型围绕着在并发过程中如何处理原子性、可见性和有序性这三个特征来建立的。 Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write这六个。我们大致可以认为&#xff0c;基本数据类型的访问、…

给csv或txt文件加上一列id

文章目录 前言代码 前言 从这样 变成这样 代码 import pandas as pd for i in range(0,10):data pd.read_csv(/home/yin/DREAMwalk-main/DREAMwalk-main/demo/LR/result/disease_label_herb_drug_{}.txt.format(i),sep\t, header0)n len(data)1nlist range(1,n)data[id] …

Amesim中删除计算结果保存计算文件

前言 Amesim在工程应用中计算的结果文件有时会很大&#xff0c;为了节省电脑存储空间&#xff0c;项目结束后可以将计算结果删除进行保存以存档。 操作步骤 具体操作步骤如下&#xff1a; Step1&#xff1a;在①File下打开&#xff08;Open&#xff09;需要删除计算结果的项…

安卓备忘录App开发

安卓备忘录APP开发,文章末尾有源码和apk安装包 目标用户: 普通安卓手机用户,需要一个简单易用的备忘录App来记录和管理日常事务。 主要功能: 用户注册: 用户可以创建一个账号,输入用户名和密码。 用户登录: 用户可以通过用户名和密码登录到应用。 用户信息存储: 用户名和…

机器学习原理之 -- 神经网络:由来及原理详解

神经网络&#xff08;Neural Networks&#xff09;是受生物神经系统启发而设计的一类计算模型&#xff0c;广泛应用于图像识别、语音识别、自然语言处理等领域。其基本思想是通过模拟人脑神经元的工作方式&#xff0c;实现对复杂数据的自动处理和分类。本文将详细介绍神经网络的…

缓存-缓存使用2

1.缓存击穿、穿透、雪崩 1.缓存穿透 指查询一个一定不存在的数据&#xff0c;由于缓存是不命中&#xff0c;将去查询数据库&#xff0c;但是数据库也无此纪录&#xff0c;我们没有将这次查询的null写入缓存&#xff0c;这将导致这个不存在的数据每次请求都要到存储层去查询&a…

算法 —— 二分查找

目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 x的平方根 山峰数组的峰顶索引 寻找峰值 搜索旋转排序数组中的最⼩值 点名 二分查找模板分为三种&#xff1a;1、朴素的二分模板 2、查找左边界的二分模板 3、查找右边界的二分模板&#xf…