机器学习原理之 -- 神经网络:由来及原理详解

news2024/11/28 11:01:04

        神经网络(Neural Networks)是受生物神经系统启发而设计的一类计算模型,广泛应用于图像识别、语音识别、自然语言处理等领域。其基本思想是通过模拟人脑神经元的工作方式,实现对复杂数据的自动处理和分类。本文将详细介绍神经网络的基本原理、结构、训练过程及其在实际应用中的优势和挑战。

神经网络的基本结构

1. 神经元(Neuron)

        神经网络的基本单元是神经元,也称为节点。每个神经元接收多个输入信号,通过加权求和和激活函数的作用,生成一个输出信号。数学表达式如下:

eq?y%20%3D%20f%5Cleft%28%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20w_i%20x_i%20+%20b%20%5Cright%29

其中:

  • eq?x_i 是输入信号
  • eq?w_i 是权重
  • b 是偏置
  • f 是激活函数
  • y 是输出信号

2. 层(Layer)

        神经网络由多个层组成,每一层包含若干神经元。根据层的不同功能,神经网络可以分为三种层:

  • 输入层(Input Layer):接收外部数据,不进行任何计算。
  • 隐藏层(Hidden Layer):位于输入层和输出层之间,通过加权求和和激活函数进行数据处理。
  • 输出层(Output Layer):生成最终的输出结果。

3. 激活函数(Activation Function)

        激活函数的作用是引入非线性,使神经网络能够处理复杂的非线性问题。常见的激活函数包括:

  • Sigmoid 函数:输出值在 (0, 1) 之间,常用于二分类问题。

    eq?%5Csigma%28x%29%20%3D%20%5Cfrac%7B1%7D%7B1%20+%20e%5E%7B-x%7D%7D

  • Tanh 函数:输出值在 (-1, 1) 之间,相较于 Sigmoid 函数对输入的变化更敏感。

    eq?%5Ctanh%28x%29%20%3D%20%5Cfrac%7Be%5Ex%20-%20e%5E%7B-x%7D%7D%7Be%5Ex%20+%20e%5E%7B-x%7D%7D

  • ReLU(Rectified Linear Unit):当输入大于0时,输出等于输入;当输入小于0时,输出等于0。

    eq?%5Ctext%7BReLU%7D%28x%29%20%3D%20%5Cmax%280%2C%20x%29

神经网络的训练过程

        神经网络的训练过程主要包括前向传播、损失计算和反向传播三个步骤。

1. 前向传播(Forward Propagation)

        前向传播是指数据从输入层经过隐藏层到输出层的过程。在每一层,神经元接收上一层的输出信号,通过加权求和和激活函数计算得到当前层的输出信号。该过程一直持续到输出层,生成最终的预测结果。

2. 损失计算(Loss Calculation)

        损失函数用于衡量神经网络的预测结果与真实标签之间的差异。常见的损失函数包括:

  • 均方误差(Mean Squared Error, MSE):用于回归任务,计算预测值与真实值之间的平方差的平均值。

    eq?%5Ctext%7BMSE%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%28y_i%20-%20%5Chat%7By_i%7D%29%5E2

  • 交叉熵(Cross-Entropy):用于分类任务,衡量两个概率分布之间的差异。

    eq?%5Ctext%7BCross-Entropy%7D%20%3D%20-%20%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20y_i%20%5Clog%28%5Chat%7By_i%7D%29

3. 反向传播(Backpropagation)

        反向传播是指通过链式法则计算损失函数相对于每个参数的梯度,并利用梯度下降法更新参数的过程。具体步骤如下:

  1. 计算损失函数的梯度:通过链式法则计算损失函数相对于每个权重和偏置的梯度。

  2. 更新参数:利用梯度下降法更新权重和偏置。更新公式如下:

    8723e1f9598e4385b8257969f852db0a.png

    其中 eq?%5Ceta 是学习率, eq?%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20w_i%7D​ 和 eq?%5Cfrac%7B%5Cpartial%20L%7D%7B%5Cpartial%20b%7D​ 分别是损失函数相对于权重和偏置的梯度。

4. 超参数调优

        训练神经网络时,还需要调整一些超参数以获得最佳的模型性能。常见的超参数包括:

  • 学习率(Learning Rate):控制参数更新的步长,过大或过小都会影响模型的收敛性。
  • 批量大小(Batch Size):每次更新参数时所使用的样本数量,较小的批量可以更快地收敛,但噪声较大。
  • 隐藏层数量和每层神经元数量:影响模型的表达能力和复杂度。

神经网络的优势和挑战

优势

  1. 非线性映射能力:神经网络通过激活函数可以处理复杂的非线性问题。
  2. 自适应学习能力:通过反向传播算法,神经网络可以自动调整参数,优化模型性能。
  3. 广泛应用:神经网络在图像识别、语音识别、自然语言处理等领域表现出色。

挑战

  1. 训练复杂度高:神经网络的训练过程需要大量的计算资源和时间,尤其是深度神经网络。
  2. 参数调优困难:神经网络的性能对超参数敏感,调优过程复杂。
  3. 过拟合风险:神经网络容易过拟合,需要正则化技术(如Dropout、L2正则化)来防止过拟合。

结论

        神经网络作为一种强大的机器学习模型,具有处理复杂非线性问题的能力。然而,其训练过程复杂,对计算资源和数据质量要求较高。在实际应用中,需要根据具体任务和数据特点,合理选择网络结构和超参数,才能充分发挥神经网络的优势。随着计算资源的提升和算法的改进,神经网络在各个领域的应用将会更加广泛和深入。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902985.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

缓存-缓存使用2

1.缓存击穿、穿透、雪崩 1.缓存穿透 指查询一个一定不存在的数据,由于缓存是不命中,将去查询数据库,但是数据库也无此纪录,我们没有将这次查询的null写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询&a…

算法 —— 二分查找

目录 二分查找 在排序数组中查找元素的第一个和最后一个位置 搜索插入位置 x的平方根 山峰数组的峰顶索引 寻找峰值 搜索旋转排序数组中的最⼩值 点名 二分查找模板分为三种:1、朴素的二分模板 2、查找左边界的二分模板 3、查找右边界的二分模板&#xf…

scrapy写爬虫

Scrapy是一个用于爬取网站数据并提取结构化信息的Python框架 一、Scrapy介绍 1.引擎(Engine) – Scrapy的引擎是控制数据流和触发事件的核心。它管理着Spider发送的请求和接收的响应,以及处理Spider生成的Item。引擎是Scrapy运行的驱动力。…

【0基础学爬虫】爬虫框架之 feapder 的使用

前言 大数据时代,各行各业对数据采集的需求日益增多,网络爬虫的运用也更为广泛,越来越多的人开始学习网络爬虫这项技术,K哥爬虫此前已经推出不少爬虫进阶、逆向相关文章,为实现从易到难全方位覆盖,特设【0…

SIFT 3D 点云关键点

检测原理 该算法在尺度空间中寻找极值点并提取出其位置、 尺度、 旋转不变量信息,提取的特征对视角变化、 仿射变换、 噪声具有一定的鲁棒性,对尺度缩放、 旋转具有较好的不变性。 SIFT关键点检测主要包括生成尺度空间构建、 空间极值点检测、 稳定关键…

Nacos 2.x 系列【18】多网卡 IP 配置

文章目录 1. 前言2. 服务端3. 客户端 1. 前言 个人电脑或者服务器,存在多网卡环境时,Nacos 可能会存在IP不正确问题。 2. 服务端 Nacos 服务在启动的时候需要选择运行时使用的IP或者网卡,在启动时,可以看到打印了IP&#xff1a…

第二周:李宏毅机器学习笔记

第二周学习周报 摘要Abstract一、深度学习1.Backpropagation(反向传播)1.1 链式法则1.2 Forward pass(前向传播)1.3 Backward pass(向后传播)1.4 总结 2. Regression(神奇宝贝案例)2…

CountDownLatch内部原理解析

文章目录 1、CountDownLatch介绍1.1、功能介绍1.2、demo1.3、问题 2、前置知识2.1、AQS整体结构2.1.1、整体结构2.1.2、state属性2.1.3、head和tail属性 3、CountDownLatchAPI源码解析3.1、countDown方法3.1.1、Sync类3.1.2、releaseShared方法3.1.3、tryReleaseShared方法 3.2…

ICMP协议详解及尝试用ping和tracert捕抓ICMP报文

一、ICMP协议 1.1、定义 ICMP(Internet Control Message Protocol,互联网控制消息协议)是一个支持IP层数据完整性的协议,主要用于在IP主机、路由器之间传递控制消息。这些控制消息用于报告IP数据报在传输过程中的错误&#xff0c…

ChatGPT4深度解析:探索智能对话新境界

大模型chatgpt4分析功能初探 目录 1、探测目的 2、目标变量分析 3、特征缺失率处理 4、特征描述性分析 5、异常值分析 6、相关性分析 7、高阶特征挖掘 1、探测目的 1、分析chat4的数据分析能力,提高部门人效 2、给数据挖掘提供思路 3、原始数据&#xf…

保研复习 | 数据结构

目录 CH1 绪论☆ 数据项、数据元素、数据结构☆ 逻辑结构和存储结构的区别☆ 顺序存储结构和链式存储结构的比较☆ 算法的重要特性☆ 算法的复杂度 CH2 线性表☆ 单链表 CH3 栈、队列和数组☆ 栈和堆是什么?☆ 栈在括号匹配中的应用☆ 栈在表达式求值中的应用☆ …

14-41 剑和诗人15 - RLAIF 大模型语言强化培训

​​​​​​ 介绍 大型语言模型 (LLM) 在自然语言理解和生成方面表现出了巨大的能力。然而,这些模型仍然存在严重的缺陷,例如输出不可靠、推理能力有限以及缺乏一致的个性或价值观一致性。 为了解决这些限制,研究人员采用了一种名为“人工…

3dsMax怎样让渲染效果更逼真出色?三套低中高参数设置

渲染是将精心构建的3D模型转化为逼真图像的关键步骤。但要获得令人惊叹的渲染效果,仅仅依赖默认设置是不够的。 实现在追求极致画面效果的同时,兼顾渲染速度和时间还需要进行一些调节设置,如何让渲染效果更加逼真? 一、全局照明与…

昇思25天学习打卡营第13天|K近邻算法实现红酒聚类

K近邻算法(K-Nearest-Neighbor, KNN)是一种用于分类和回归的非参数统计方法,是机器学习最基础的算法之一。它正是基于以上思想:要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接…

数据结构基础--------【二叉树基础】

二叉树基础 二叉树是一种常见的数据结构,由节点组成,每个节点最多有两个子节点,左子节点和右子节点。二叉树可以用来表示许多实际问题,如计算机程序中的表达式、组织结构等。以下是一些二叉树的概念: 二叉树的深度&a…

win10使用小技巧二

1. 解决电脑更新后无法连接打印机问题 步骤:右击电脑 → 选择“管理” → 打开“服务和应用程序” → 双击“服务” → 找到“Print Spooler” → 双击打开 → 在“常规”中将“启动类型”改为“自动” → 点击“应用” → 点击“确定” → 重启电脑。 2. 提升电脑…

rocketmq-console可视化界面功能说明

rocketmq-console可视化界面功能说明 登录界面OPS(运维)Dashboard(驾驶舱)Cluster(集群)Topic(主题)Consumer(消费者)Producer(生产者)Message(消息)MessageTrace(消息轨迹) rocketmq-console是rocketmq的一款可视化工具,提供了mq的使用详情等功能。 本章针对于rock…

css使用伪元素after或者before的时候想要给after设置z-index无效

css使用伪元素after或者before的时候想要给after或者before设置一个层级关系,使该伪类写入的样式在box的下面,发现给box设置z-index无效, 需要找到父级元素,在父级元素上设置z-index值并且将伪类设置z-index:-1

在数字化时代,自助BI是数据价值最大化的必经之路

引言:在数字化时代,数据已成为企业最宝贵的资产之一。然而,仅仅拥有海量数据并不足以带来竞争优势,关键在于如何有效地分析并利用这些数据以指导决策、优化运营、提升客户体验,并最终实现业务的持续增长。在一章里笔者…

实验1 主成分分析

目 录 二、实验环境... 1 三、实验内容... 1 3.1 导入数据... 2 3.2 求相关系数矩阵.. 3 3.3 数据规范化处理.. 3 3.4 主成分分析... 4 四 实验心得... 5 一、实验目的 (1)理解主成分分析的思想; (2)掌握主成分分析方…