原式:
lim
x
→
0
+
x
x
\lim _{x\to 0^{+}} {x^{x}}
x→0+limxx
根据公式1:
u
(
x
)
v
(
x
)
=
e
u
(
x
)
ln
v
(
x
)
u(x)^{v(x)}=e^{u(x)\ln v(x)}
u(x)v(x)=eu(x)lnv(x)则原式可以化为
lim
x
→
0
+
e
x
ln
x
\lim _{x\to 0^{+}} e^{x \ln x}
x→0+limexlnx
接下来利用倒代换进行进一步计算。(倒代换:令t=1/x,那么当x->0时,t->infinity。)
令t=1/x,则原式化为:
lim
x
→
0
+
,
t
=
1
x
(
t
→
+
∞
)
e
1
t
ln
1
t
\lim _{x \to 0^{+},t = \frac{1}{x}(t\to +\infin)} {e^{\frac{1}{t}\ln {\frac{1}{t}}}}
x→0+,t=x1(t→+∞)limet1lnt1
=
lim
x
→
0
+
,
t
=
1
x
(
t
→
+
∞
)
e
ln
1
t
t
=\lim _{x \to 0^{+},t = \frac{1}{x}(t\to +\infin)} {e^{\frac{\ln {\frac{1}{t}}}{t}}}
=x→0+,t=x1(t→+∞)limetlnt1
1/t实际上就是0,那么
∵
lim
x
→
0
+
ln
x
=
−
∞
\because \lim _{x\to0^{+}} {\ln x}=-\infin
∵x→0+limlnx=−∞
∴
原式
=
lim
x
→
0
,
t
=
1
x
(
t
→
∞
)
e
−
−
ln
1
t
t
\therefore 原式=\lim _{x \to 0,t = \frac{1}{x}(t\to\infin)} {e^{-\frac{-\ln {\frac{1}{t}}}{t}}}
∴原式=x→0,t=x1(t→∞)lime−t−lnt1
那么此时直接求解
lim
t
→
+
∞
−
ln
1
t
t
\lim _{t\to +\infin}{\frac{-\ln {\frac{1}{t}}}{t}}
t→+∞limt−lnt1即可。上面的是一个inf/inf式极限,验证一下是否可以使用洛必达:
1
)
都为无限;
1)都为无限;
1)都为无限;
2
)
g
′
(
x
)
=
x
′
=
1
,
≠
0
2)g'(x)=x'=1,\neq 0
2)g′(x)=x′=1,=0
3
)
lim
t
→
+
∞
f
′
(
t
)
g
′
(
t
)
=
lim
t
→
+
∞
f
′
(
t
)
且
lim
t
→
+
∞
f
′
(
t
)
=
A
3)\lim _{t\to +\infin} \frac{f'(t)}{g'(t)}=\lim _{t\to +\infin}{f'(t)}\quad 且 \quad \lim_{t\to +\infin} f'(t)=A
3)t→+∞limg′(t)f′(t)=t→+∞limf′(t)且t→+∞limf′(t)=A求导得
[
−
ln
1
t
]
′
=
[
−
(
ln
1
−
ln
t
)
]
′
=
[
ln
t
]
′
=
1
t
[-\ln \frac{1}{t}]'=[-(\ln1-\ln t)]'=[\ln t]'=\frac{1}{t}
[−lnt1]′=[−(ln1−lnt)]′=[lnt]′=t1故
lim
t
→
+
∞
−
ln
1
t
t
=
1
t
=
0
\lim _{t\to +\infin}{\frac{-\ln {\frac{1}{t}}}{t}}=\frac{1}{t}=0
t→+∞limt−lnt1=t1=0那么
lim
x
→
0
+
,
t
=
1
x
(
t
→
+
∞
)
e
ln
1
t
t
=
e
0
=
1
\lim _{x \to 0^{+},t = \frac{1}{x}(t\to +\infin)} {e^{\frac{\ln {\frac{1}{t}}}{t}}}=e^{0}=1
x→0+,t=x1(t→+∞)limetlnt1=e0=1
【注:e0=1的具体证明可以见此处】
所以得出:
lim
x
→
0
x
x
=
1
\lim _{x\to 0}x^{x}=1
x→0limxx=1