目录
1 主要内容
2 部分程序
3 实现效果
4 下载链接
1 主要内容
本程序是对《计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法》方法复现,非完全复现,只做了日前日内部分,并在上述基础上改进升级为电热综合电源微网系统,未考虑节点系统。
本程序依据上述文献模型实现一个虚拟电厂/微网多时间尺度电热综合能源系统低碳经济调度模型,源侧在碳捕集电厂中装设烟气旁路系统与溶液存储器,形成碳捕集电厂综合灵活运行方式进而与风电协调配合;荷侧调用不同响应速度的价格型、激励型需求响应资源克服多时间尺度下碳捕集电厂综合灵活运行方式的局限,通过源荷资源协调优化,从而提高系统的低碳性能。其次,构建源荷协调的日前-日内两阶段低碳经济调度模型,优化系统的负荷及分配计划。
2 部分程序
%% 决策变量 % 电力源出力 GT_P = sdpvar(2,24,'full'); % 燃气轮机电出力 P_w = sdpvar(1,24,'full'); % 风电机组出力 P_G = sdpvar(3,24,'full'); % 火电机组出力 EB=sdpvar(2,24,'full'); % 电锅炉出力 % 热力源出力 GT_H = sdpvar(2,24,'full'); % 燃气轮机热出力 EB_H=sdpvar(2,24,'full'); % 电锅炉热出力 % 天然气 P_gas=sdpvar(2,24,'full'); % 天然气需求 % 碳捕集相关 E_G=sdpvar(3,24,'full'); % 碳捕集机组产生的总碳排放 E_total_co2=sdpvar(3,24,'full'); % 机组捕获的总碳排放 E_CG=sdpvar(3,24,'full'); % 储液装置提供的待捕集二氧化碳量 P_B=sdpvar(3,24,'full'); % 机组运行能耗 P_J=sdpvar(3,24,'full'); % 机组净出力 V_CA=sdpvar(3,24,'full'); % 机组净出力 V_FY=sdpvar(3,24,'full'); % 富液体积 V_PY=sdpvar(3,24,'full'); % 贫液体积 P_tran=sdpvar(1,24,'full'); % 系统可转移电负荷 P_cut=sdpvar(1,24,'full'); % 系统可削减电负荷 P_DE=sdpvar(1,24,'full'); % 系统经过过需求响应后的电负荷 H_tran=sdpvar(1,24,'full'); % 系统可转移热负荷 H_cut=sdpvar(1,24,'full'); % 系统可削减热负荷 H_DE=sdpvar(1,24,'full'); % 系统经过过需求响应后的热负荷 gn=5; P_G_line= sdpvar(3,24,'full'); % 火电机组出力 %% 约束条件 C = []; %约束条件初始 for t=1:24 for i=1:3 C = [C, 0<=E_CG(i,t), 0<=P_B(i,t), E_G(i,t)==eg(i)*P_G(i,t), % 碳捕集机组产生的总碳排放 E_total_co2(i,t)==E_CG(i,t)+0.25*E_bata*eg(i)*(y1(i,t)-y2(i,t)), % 机组捕获的二氧化碳总量 0<=E_total_co2(i,t)<=P_yita*E_bata*eg(i)*P_G_max(i), P_B(i,t)==P_lamda(i)*E_total_co2(i,t), % 机组运行能耗 P_G(i,t)==P_J(i,t)+P_D(i,t)+P_B(i,t), % 机组输出总功率 P_G_min(i)-P_lamda(i)*P_yita*E_bata*eg(i)*P_G_max(i)-P_D(i)<=P_J(i,t)<=P_G_max(i)-P_D(i), % 碳捕集电厂净出力范围 0<= P_w(t)<= P_prew(t), % 风电出力区间约束 sum(EB(:,t))+P_w(t)<=P_prew(t); P_G_min(i)<= P_G(i,t)<=P_G_max(i), % 火电机组出力约束 ]; end end C=[C,min(sum(R_u),sum(P_G_max)-sum(P_G))>=0.01*max(P_DE),]; % 旋转备用约束