【CSAPP】-linklab实验

news2025/2/27 3:30:13

目录

实验目的与要求

实验原理与内容

实验步骤

实验设备与软件环境

实验过程与结果(可贴图)

实验总结


实验目的与要求


1.了解链接的基本概念和链接过程所要完成的任务。
2.理解ELF目标代码和目标代码文件的基本概念和基本构成
3.了解ELF可重定位目标文件和可执行目标文件的差别。
4.理解符号表中包含的全局符号、外部符号和本地符号的定义。
5.理解符号解析的目的和功能以及进行符号解析的过程。


实验原理与内容


每个实验阶段(共5个)考察ELF文件组成与程序链接过程的不同方面知识
阶段1:全局变量数据节
阶段2:强符号与弱符号数据节
阶段3:代码节修改
阶段4:代码与重定位位置
阶段5:代码与重定位类型

在实验中的每一阶段n(n=1,2,3,4,5…),按照阶段的目标要求修改相应可重定位二进制目标模块phase[n].o后,使用如下命令生成可执行程序linkbomb:
$ gcc -o linkbomb main.o phase[n].o [其他附加模块——见具体阶段说明]
正确性验证:如下运行可执行程序linkbomb,应输出符合各阶段期望的字符串:
$ ./linkbomb
$ 19210320303        [仅供示例,具体目标字符为每位学生学号]
实验结果:将修改后正确完成相应功能的各阶段模块(phase1.o, phase2.o, …)提交供评分。


实验步骤


1. 实验数据
学生实验数据包: linklab学号.tar
数据包中包含下面文件:
main.o:主程序的二进制可重定位目标模块(实验中无需修改)
phase1.o, phase2.o, phase3.o, phase4.o, phase5.o:各阶段实验所针对的二进制可重定位目标模块,需在相应实验阶段中予以修改。
解压命令:tar xvf linklab学号.tar
2. 实验工具
readelf:读取ELF格式的各.o二进制模块文件中的各类信息,如节(节名、偏移量及其中数据等)、符号表、字符串表、重定位记录等
objdump:反汇编代码节中指令并提供上述部分类似功能
hexedit:编辑二进制文件内容


实验阶段1
要求:修改二进制可重定位目标文件“phase1.o”的数据节内容,使其与main.o链接后能够运行输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase1.o -no-pie

$ ./linkbomb

学号

实验提示:
检查反汇编代码,获得printf(根据情况有可能被编译时转换为puts)输出函数的参数的(数据节中)地址 。
使用hexedit工具(或自己编写实现二进制ELF文件编辑程序),对phase1.o数据节中相应字节进行修改。

实验阶段2
要求:根据强符号与弱符号的原则,判断符号表中的符号以及其所对应的数据区域。利用符号解析规则,创建生成一个名为“phase2_patch.o”的二进制可重定位目标文件(可以不修改phase2.o模块),使其与main.o、phase2.o链接后能够运行和输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase2.o phase2_patch.o  -no-pie

$ ./linkbomb

学号

实验提示:
Phase2.o模块的符号表中,包含了类型为COM的符号。此类符号的特点是:未被赋初值。所以,其在ELF的数据节中并不真实存在。所以需要另寻解决办法,创造出真实存在的数据并对其进行二进制编辑,以达到输出自己学号的目的。
解题需要运用的主要知识为强弱符号的解析规则。另外,层序中包含了一个数值转换过程,学生需要根据反汇编代码确定其修改规则,并根据修改规则进行“反制”。

实验阶段3
要求:修改二进制可重定位目标文件“phase3.o”的代码节内容,使其与main.o链接后能够运行输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase3.o -no-pie

$ ./linkbomb

学号


实验提示:
检查反汇编代码,定位模块中的各组成函数并推断其功能作用。 根据反汇编程序的执行逻辑,修改函数中的机器指令(用自己指令替换函数体中的nop指令)以实现期望的输出。
为了实现输出功能,自行编写获得的二进制程序(可以通过编写汇编代码然后使用gcc -c命令的方式实现)可以“借用”其他函数中的“有用代码或数据”,比如输出函数和数据引用等具体部分。

实验阶段4
要求:修改二进制可重定位目标文件“phase4.o”中重定位节和数据节中的内容,使其与main.o链接后能够运行输出(且仅输出)自己的学号:

$ gcc -o linkbomb main.o phase4.o -no-pie

$ ./linkbomb

学号


实验提示:
本阶段学生所拿到的.o文件中的“重定位位置”信息已经被抹除,学生需要根据实际情况确认冲重定位的发生位置,并根据重定位类型对位置信息进行恢复。若程序未能够正确修改重定位位置,则典型问题表现为段错误segmentation fault。此外,还需要学生根据程序所用到的数据情况进行数据部分的二进制修改。

实验阶段5
要求:修改二进制可重定位目标文件“phase5.o”中重定位节和数据节的内容,使其与main.o链接后能够正确输出(且仅输出)自己学号:

$ gcc -o linkbomb main.o phase5.o -no-pie

$ ./linkbomb

学号 

You called touch2。若不完全满足题目要求,则会提示“Misfire” 和FAIL相关字段。
阶段5:使用ROP方式对rtarget进行攻击,调用touch3,且成功输出Touch3!: You called touch3。若不完全满足题目要求,则会提示“Misfire” 和FAIL相关字段。

实验设备与软件环境


1.Linux操作系统—64位Ubuntu 18.04
2. gdb调试器和objdump反汇编指令
3. 笔记本

实验过程与结果(可贴图)

实验工具
readelf:读取ELF格式的各.o二进制模块文件中的各类信息,如节(节名、偏移量及其中数据等)、符号表、字符串表、重定位记录等
objdump:反汇编代码节中指令并提供上述部分类似功能
hexedit:编辑二进制文件内容
阶段一
使用如下命令生成可执行程序linkbomb:
$ gcc -o linkbomb main.o phase1.o -no-pie
正确性验证:如下运行可执行程序linkbomb
$ ./linkbomb
应输出符合各阶段期望的字符串:
$ 232151503xx (已修改的情况下)


先执行一遍linkbomb 保证程序不会出现乱码
这里我们还没有修改,所以不会有结果

输入readelf -a phase1.o 查看elf文件内容


其中我们完成学号字符串的输出,找到对应参数g_data,其重定向类型是绝对地址(R_X86_64_32),且+了0x18,同时也是一个OBJECT-全局变量。因此我们需要找到对应的.data节在全文中的偏移量,从而将g_data的内容修改为学号字符串,完成phase1。

(R_X86_64_32)那里是5c,加上我们data中的60就是
5c+60=bc
从而确定在0xbc处插入我们需要插入的数据-学号字符串。

Ascii码的0-9是0x30-0x39
我的学号是23215150318
也就是32 33 32 31 35 31 35 30 33 31 38
接着输入hexedit phase1.o命令来修改phase1.o,并对phase1.o数据节中相应字节进行修改

修改完记得00结尾加保存ctrl+w,ctrl+x退出编辑

00结尾才能知道修改到的值

这是一个比较大的空间
我们找到0xbc的地方
这里显示的是b4,我们就挨个去算,4567,8 9 10 11
11位就是bb,12就是bc
我们就把32 33 32 31 35 31 35 30 33 31 38放进去,再00结尾保存
退出即可。

再验证一下有没有保存到
$ gcc -o linkbomb main.o phase1.o -no-pie
$ ./linkbomb


这样就过关了。

阶段二
使用readelf查看phase2.o并查找有关输出函数的内容。
输入readelf -a phase2.o 查看elf文件内容


可以发现COM未被赋初始值,COM表示g_myCharArray是一个未初始化的弱符号数组,大小Size为256,所以我们需要创建一个已初始化强符号的g_myCharArray来覆盖弱符号。需要打补丁phase2_patch.o

从中可以看到put函数的参数是g_myCharArray,其+0x5c,重定向类型也为绝对地址。

创建phase2_patch.c文件并写入0x5c个字节的“0”以及学号ASCII码。


使用“gcc -c phase2_patch.c”编译生成phase2_patch.o文件并链接:“gcc -o linkbomb2 main.o phase2.o phase2_patch.o -no-pie”,最后运行程序

每个字符都发生了偏移。为了得到偏移量来反偏移得到字符串,实现学号的插入,为了方便计算输入的结果,我们编写一个程序来手动计算偏移量得出的结果,最终通过编辑好学号key,来计算be=%d输出计算结果,即正确的反偏移答案。
hack.c

使用“gcc -c hack.c”编译生成hack.o文件并链接
   运行:gcc hack.c -o hack
gcc -o linkbomb2 main.o phase2.o phase2_patch.o -no-pie
./linkbomb2 > out
./hack < out

最终通过编辑好学号key,来计算be=%d输出计算结果,即正确的反偏移答案。
编译计算文件并链接上linkbomb2,将结果导出为out并使用out运行计算文件,得到的be值即为学号对应的反偏移量,修改patch文件中的字符串。


得到结果文件后再次编译链接运行linkbomb2

成功输出学号,这样就算过关了。


阶段三


链接 linkbomb3 执行:gcc -o linkbomb3 main.o phase3.o -no-pie
使用 objdump -d linkbomb3 反汇编查看汇编代码:

如果想要成功打印学号,应该是打印在后,所以包含puts语句的myFunc1方法在后面,并且接收一个参数,这个参数应该是学号;而myFunc2则是获取一个地址的值给到%rax寄存器。

可以看出,就是先调用myFunc2函数获取学号赋值给%rax,然后mov %rax,%rdi设置参数在调用myFunc1

所以我们注入的命令顺序为:

    1、call myFunc2
    2、Mov %rax,%rdi
    3、Call myFunc1

使用 readelf -a phase3.o 查看 .text 节的偏移量:为0x40

使用 objdump -d phase3.o 查看 do_phase 填充代码地址

填充的起始地址是 0x40 + 0x31 = 0x71。
其中 call 指令是相对寻址,myFunc 函数的地址为

第一条指令call指令对应的机器码是e8 xx xx xx xx ,占 5 个字节,结束地址为 0x31 + 0x5 = 0x36,所以距离 myFunc2 函数地址的相对距离为 0x1b - 0x36 =-1b,也就是 e5 ff ff ff,

所以第一条 call 指令为 e8 e5 ff ff ff。

第二条指令mov %rax,%rdi,mov %rax,%rdi的机器码是为 48 89 c7

第三条指令为call指令对应的机器码是e8 xx xx xx xx ,占 5 个字节,加上第二条指令的 3 个字节,所以结束地址为 0x36 + 0x3 + 0x5 = 0x3e ,所以距离 myFunc1 函数地址的相对距离为 0x0 - 0x3e = c2 ff ff ff ,所以第三条指令为 e8 c2 ff ff ff 。

修改 phase3.o 的二进制,将构造的代码注入

然后执行 hexedit phase3.o 从 0x71 开始写入我们构造的代码


接着来查看是否修改
执行 objdump -d phase3.o查看 do_phase3 函数


可以看到修改成功


完成代码插入,现在需要完成学号赋值。回看myFunc2函数汇编,发现学号赋值处函数获取数据的内存地址,即为.data节。因此我们需要找到节头以及加数。图13中显示.data节节头为0x1a0,重新查看ELF发现.data加数是为0x5c,从而确定学号应当位于phase3.o的0x1a0+0x5c=0x1fc处,并且以“00”结尾进行插入。

 readelf -a phase3.o

执行 hexedit phase3.o 从0x1fc修改成我们的学号


gcc -o linkbomb3 main.o phase3.o -no-pie
./linkbomb3

通过查阅之前讲过的第三章的知识,也算恶补了一下。
至此,阶段三结束。

实验总结

  通过此实验,我掌握了符号解析、符号定义分类 、静态链接解析过程、符号表条目、重定位,还有的是关于地址的计算。基于ELF文件格式和程序链接过程的理解,修改给定二进制可重定位目标文件的数据内容、机器指令等部分。实验过程中,我有遇到了bug,但通过了查询资料(书都要翻烂了)、上百度搜问,最后自己独立解决了bug。通过完成此次实验,不仅收获了很多知识,而且还锻炼了我的动手能力。解决了问题,完成了实验,感觉收获满满的,也有一定的成就感。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1894846.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Cloudflare 推出一款免费对抗 AI 机器人的可防止抓取数据工具

上市云服务提供商Cloudflare推出了一种新的免费工具&#xff0c;可防止机器人抓取其平台上托管的网站以获取数据以训练AI模型。 一些人工智能供应商&#xff0c;包括谷歌、OpenAI 和苹果&#xff0c;允许网站所有者通过修改他们网站的robots.txt来阻止他们用于数据抓取和模型训…

Movable antenna 早期研究

原英文论文名字Historical Review of Fluid Antenna and Movable Antenna 最近&#xff0c;无线通信研究界对“流体天线”和“可移动天线”两种新兴天线技术的发展引起了极大的关注&#xff0c;这两种技术因其前所未有的灵活性和可重构性而极大地提高了无线应用中的系统性能。…

推荐 2个功能强大的黑科技工具,真的会让你直呼卧槽

Waifu2X Waifu2x 是一个基于深度学习的开源项目&#xff0c;主要用于处理二次元动漫风格的图像。它使用卷积神经网络&#xff08;CNN&#xff09;进行超分辨率处理和降噪&#xff0c;能够将图像放大2倍或更多&#xff0c;同时显著提高清晰度和减少噪声。Waifu2x 特别针对日系漫…

如何在TikTok上获得更多观看量:12个流量秘诀

TikTok作为热门海外社媒&#xff0c;在跨境出海行业中成为新兴的推广渠道&#xff0c;但你知道如何让你的TikTok赢得更多关注次数吗&#xff1f;如果您正在寻找增加 TikTok 观看次数的方法&#xff0c;接下来这12种策略&#xff0c;你需要一一做好&#xff01; 1. 在内容中添加…

菊风 Juphoon | 直击 MWC 2024 上海首日开幕

​ 6月26日&#xff0c;上海世界移动通信大会&#xff08;MWC 2024&#xff09;在上海新国际博览中心正式开幕&#xff0c;以“未来先行”为大会主题&#xff0c;为期三天&#xff08;6月26日 - 6月28日&#xff09;&#xff0c;吸引了来自全球的数千名参展商和观众&#xff0…

99. 岛屿数量

题目描述&#xff1a;给定一个由 1&#xff08;陆地&#xff09;和 0&#xff08;水&#xff09;组成的矩阵&#xff0c;你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接而成&#xff0c;并且四周都是水域。你可以假设矩阵外均被水包围。 输入描述&#xff1a…

YOLOv8

YOLOv8 设计快速、准确且易于使用&#xff0c;使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择框架 1.安装YOLOv8 创建虚拟环境 conda create --name ros2 python3.10 激活虚拟环境 conda activate ros2 安装组件 pip install ultralytics -i h…

classin视频下载提取为mp4教程

最近在上classin网课&#xff0c;无奈网课视频要过期了&#xff0c;所以想保存下来&#xff01; 下面介绍提取的教程 我们可以绕过最开始的握手&#xff0c;就是先播放了一段时间后&#xff0c;再打开抓包&#xff0c;回到Classin播放后&#xff0c;就可以获得网课链接了 直接打…

智慧矿山:EasyCVR助力矿井视频多业务融合及视频转发服务建设

一、方案背景 随着矿井安全生产要求的不断提高&#xff0c;视频监控、数据传输、通讯联络等业务的需求日益增长。为满足矿井生产管理的多元化需求&#xff0c;提高矿井作业的安全性和效率&#xff0c;TSINGSEE青犀EasyCVR视频汇聚/安防监控综合管理平台&#xff0c;旨在构建一…

Buuctf之不一样的flag(迷宫题)

首先&#xff0c;进行查壳无壳&#xff0c;32bit&#xff0c;丢进ida32中进行反编译进入main函数&#xff0c;对其进行分析&#xff0c;可以在一旁打上注释&#xff0c;这边最关键的一个点就是&#xff0c;需要联想到这是一个迷宫题&#xff0c;很小的迷宫题&#xff0c;迷宫就…

easyexcel使用小结-未完待续

官网&#xff1a;https://easyexcel.opensource.alibaba.com/docs/current/ <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>4.0.1</version></dependency>一、读 1.1简单读 Getter…

《昇思25天学习打卡营第8天|模型训练》

文章目录 今日所学&#xff1a;一、构建数据集二、定义神经网络模型三、了解超参、损失函数和优化器1. 超参2. 损失函数3. 优化器 四、训练与评估总结 今日所学&#xff1a; 在今天这一节我主要学习了模型的训练&#xff0c;知道了模型训练一般分为四个步骤&#xff1a; 构建…

简单解读伦敦银CFD(XAG)走势图

从本质上说&#xff0c;伦敦银是一种差价合约&#xff08;CFD&#xff09;交易&#xff0c;在同平台所提供的MT4中&#xff0c;它的代码也许并不一样&#xff0c;有的平台会显示为XAG&#xff0c;有的平台会显示为LLS或Silver&#xff0c;但它们指的其实是同一个品种&#xff0…

PyPDF2合并PDF文件的高级应用:指定合并方式

本文目录 前言一、合并PDF的高级应用1、逻辑讲解2、合并效果图3、完整代码二、异常校验1、合并过程中的错误校验前言 本文我们主要来讲解一下PyPDF2合并PDF文件的高级应用,就是指定合并方式进行合并,构建函数支持模式选择,主要不管咋折腾,其实就是不想去付费买那个PDF编辑…

【unity实战】使用unity的新输入系统InputSystem+有限状态机设计一个玩家状态机控制——实现玩家的待机 移动 闪避 连击 受击 死亡状态切换

最终效果 文章目录 最终效果前言人物素材新输入系统InputSystem的配置动画配置代码文件路径状态机脚本创建玩家不同的状态脚本玩家控制源码完结 前言 前面我们已经写过了使用有限状态机制作一个敌人AI&#xff1a;【unity实战】在Unity中使用有限状态机制作一个敌人AI 那么玩…

[吃瓜教程]南瓜书第5章神经网络

1.M-P神经元 M-P神经元&#xff0c;全称为McCulloch-Pitts神经元&#xff0c;是一种数学模型&#xff0c;用于模拟生物神经元的功能。这个模型是由Warren McCulloch和Walter Pitts在1943年提出的。它是人工智能和计算神经科学领域中非常重要的早期模型。 M-P神经元接收n个输入…

成都晨持绪:开一家抖音网店到底能不能赚钱

在数字化时代的浪潮中&#xff0c;抖音以其独特的魅力迅速占领了社交媒体的舞台。众多创业者纷纷把目光投向这个新兴平台&#xff0c;企图在短视频的海洋里找到属于自己的财富岛屿。但是&#xff0c;开一家抖音网店到底能不能赚钱呢? 我们要认识到&#xff0c;抖音作为一个流量…

Excel为数据绘制拆线图,并将均值线叠加在图上,以及整个过程的区域录屏python脚本

Excel为数据绘制拆线图,并将均值线叠加在图上,以及整个过程的区域录屏python脚本 1.演示动画A.视频B.gif动画 2.跟踪鼠标区域的录屏脚本 Excel中有一组数据,希望画出曲线,并且能把均值线也绘制在图上,以下动画演示了整个过程,并且提供了区域录屏脚本,原理如下: 为节约空间,避免…

九、函数的声明和定义

函数声明&#xff1a; 1. 告诉编译器有一个函数叫什么&#xff0c;参数是什么&#xff0c;返回类型是什么。但是具体是不是存在&#xff0c;函数 声明决定不了。 2. 函数的声明一般出现在函数的使用之前。要满足先声明后使用。 3. 函数的声明一般要放在头文件中的。 定义的函…

ffmpeg下载/配置环境/测试

一、下载 1、访问FFmpeg官方网站下载页面&#xff1a;FFmpeg Download Page&#xff1b; 2、选择适合Windows的版本&#xff08;将鼠标移动到windows端&#xff09;。通常&#xff0c;你会找到“Windows builds from gyan.dev”或者“BtbN GitHub Releases”等选项&#xff0…