YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择框架
1.安装YOLOv8
创建虚拟环境
conda create --name ros2 python=3.10
激活虚拟环境
conda activate ros2
安装组件
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
下载代码
GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite
常用命令
model 传入的model.yaml文件或者model.pt文件,用于构建网络和初始化,不同点在于只传入yaml文件的话参数会随机初始化
data 训练数据集的配置yaml文件
epochs 训练轮次,默认100
patience 早停训练观察的轮次,默认50,如果50轮没有精度提升,模型会直接停止训练
batch 训练批次,默认16
imgsz 训练图片大小,默认640
save 保存训练过程和训练权重,默认开启
save_period 训练过程中每x个轮次保存一次训练模型,默认-1(不开启)
cache 是否采用ram进行数据载入,设置True会加快训练速度,但是这个参数非常吃内存,一般服务器才会设置
device 要运行的设备,即cuda device =0或Device =0,1,2,3或device = cpu
workers 载入数据的线程数。windows一般为4,服务器可以大点,windows上这个参数可能会导致线程报错,发现有关线程报错,可以尝试减少这个参数,这个参数默认为8,大部分都是需要减少的
project 项目文件夹的名,默认为runs
name 用于保存训练文件夹名,默认exp,依次累加
exist_ok 是否覆盖现有保存文件夹,默认Flase
pretrained 是否加载预训练权重,默认Flase
optimizer 优化器选择,默认SGD,可选[SGD、Adam、AdamW、RMSProP]
verbose 是否打印详细输出
seed 随机种子,用于复现模型,默认0
deterministic 设置为True,保证实验的可复现性
single_cls 将多类数据训练为单类,把所有数据当作单类训练,默认Flase
image_weights 使用加权图像选择进行训练,默认Flase
rect 使用矩形训练,和矩形推理同理,默认False
cos_lr 使用余弦学习率调度,默认Flase
close_mosaic 最后x个轮次禁用马赛克增强,默认10
resume 断点训练,默认Flase
lr0 初始化学习率,默认0.01
lrf 最终学习率,默认0.01
label_smoothing 标签平滑参数,默认0.0
dropout 使用dropout正则化(仅对训练进行分类),默认0.0
测试
yolo predict model=/home/share/yolov8s.pt source='/home/share/bus.jpg'
或者
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
"model="后面所添加的是权重的位置。因为此权重才主目录故直接选择即可。
“source=”后面所添加的是需要检测照片的地址,如果自己想识别其他的文件,则可以在source=后面加入图片或视频的“地址+文件名”。
原图片
结果图片