【机器学习】机器学习与医疗健康在疾病预测中的融合应用与性能优化新探索

news2024/11/25 11:52:03

在这里插入图片描述
在这里插入图片描述

文章目录

    • 引言
    • 第一章:机器学习在医疗健康中的应用
      • 1.1 数据预处理
        • 1.1.1 数据清洗
        • 1.1.2 数据归一化
        • 1.1.3 特征工程
      • 1.2 模型选择
        • 1.2.1 逻辑回归
        • 1.2.2 决策树
        • 1.2.3 随机森林
        • 1.2.4 支持向量机
        • 1.2.5 神经网络
      • 1.3 模型训练
        • 1.3.1 梯度下降
        • 1.3.2 随机梯度下降
        • 1.3.3 Adam优化器
      • 1.4 模型评估与性能优化
        • 1.4.1 模型评估指标
        • 1.4.2 超参数调优
        • 1.4.3 增加数据量
        • 1.4.4 模型集成
    • 第二章:疾病预测的具体案例分析
      • 2.1 糖尿病预测
        • 2.1.1 数据预处理
        • 2.1.2 模型选择与训练
        • 2.1.3 模型评估与优化
      • 2.2 心脏病预测
        • 2.2.1 数据预处理
        • 2.2.2 模型选择与训练
        • 2.2.3 模型评估与优化
      • 2.3 肺癌预测
        • 2.3.1 数据预处理
        • 2.3.2 模型选择与训练
        • 2.3.3 模型评估与优化
    • 第三章:性能优化与前沿研究
      • 3.1 性能优化
        • 3.1.1 特征工程
        • 3.1.2 超参数调优
        • 3.1.3 模型集成
      • 3.2 前沿研究
        • 3.2.1 深度学习在医疗健康中的应用
        • 3.2.2 联邦学习与隐私保护
        • 3.2.3 强化学习在医疗决策中的应用
    • 结语

引言

机器学习是一种通过数据训练模型,并利用模型对新数据进行预测和决策的技术。其基本思想是让计算机通过样本数据自动学习规律,而不是通过明确的编程指令。根据学习的类型,机器学习可以分为监督学习、无监督学习和强化学习。随着医疗健康领域数据的快速积累,机器学习在疾病预测、诊断和治疗中的应用越来越广泛,为提升医疗服务质量和效率提供了强有力的技术支持。

本文将详细介绍机器学习在医疗健康中的应用,包括数据预处理、模型选择、模型训练和性能优化。通过具体的案例分析,展示机器学习技术在疾病预测中的实际应用,并提供相应的代码示例。
在这里插入图片描述

第一章:机器学习在医疗健康中的应用

1.1 数据预处理

在医疗健康应用中,数据预处理是机器学习模型成功的关键步骤。医疗数据通常具有高维度、时间序列性和噪声,需要进行清洗、归一化和特征工程。

1.1.1 数据清洗

数据清洗包括处理缺失值、异常值和重复数据。缺失值可以通过删除、插值或填充等方法处理;异常值可以通过统计分析和域知识进行识别和处理;重复数据可以通过去重操作去除。

import pandas as pd
import numpy as np

# 加载数据
data = pd.read_csv('medical_data.csv')

# 处理缺失值
data.fillna(data.mean(), inplace=True)

# 处理异常值
data = data[(np.abs(data - data.mean()) <= (3 * data.std()))]

# 去除重复数据
data.drop_duplicates(inplace=True)
1.1.2 数据归一化

数据归一化可以消除不同特征之间的量纲差异,常见的方法包括标准化和最小最大缩放。

from sklearn.preprocessing import StandardScaler, MinMaxScaler

# 标准化
scaler = StandardScaler()
data_standardized = scaler.fit_transform(data)

# 最小最大缩放
scaler = MinMaxScaler()
data_normalized = scaler.fit_transform(data)
1.1.3 特征工程

特征工程包括特征选择、特征提取和特征构造。特征选择可以通过相关性分析和主成分分析(PCA)等方法进行;特征提取可以通过技术指标计算等方法进行;特征构造可以通过组合和变换现有特征生成新的特征。

from sklearn.decomposition import PCA

# 特征选择
correlation_matrix = data.corr()
selected_features = correlation_matrix.index[abs(correlation_matrix["target"]) > 0.5]

# 主成分分析
pca = PCA(n_components=5)
data_pca = pca.fit_transform(data[selected_features])

1.2 模型选择

在医疗健康中,常用的机器学习模型包括逻辑回归、决策树、随机森林、支持向量机(SVM)和神经网络等。不同模型适用于不同的任务和数据特征,需要根据具体应用场景进行选择。

1.2.1 逻辑回归

逻辑回归适用于二分类任务,如疾病预测和患者分类。

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 数据分割
X = data.drop("target", axis=1)
y = data["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.2.2 决策树

决策树适用于分类和回归任务,能够处理非线性数据,并具有良好的解释性。

from sklearn.tree import DecisionTreeClassifier

# 训练决策树模型
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.2.3 随机森林

随机森林通过集成多棵决策树,提高了模型的稳定性和预测精度,特别适用于复杂的医疗数据。

from sklearn.ensemble import RandomForestClassifier

# 训练随机森林模型
model = RandomForestClassifier()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.2.4 支持向量机

支持向量机适用于分类任务,特别是在高维数据和小样本数据中表现优异。

from sklearn.svm import SVC

# 训练支持向量机模型
model = SVC()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.2.5 神经网络

神经网络适用于复杂的预测和分类任务,能够捕捉数据中的非线性关系。常用的神经网络包括前馈神经网络、卷积神经网络(CNN)和递归神经网络(RNN)。

from keras.models import Sequential
from keras.layers import Dense

# 构建神经网络模型
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=X_train.shape[1]))
model.add(Dense(units=32, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

1.3 模型训练

模型训练是机器学习的核心步骤,通过优化算法最小化损失函数,调整模型参数,使模型在训练数据上表现良好。常见的优化算法包括梯度下降、随机梯度下降和Adam优化器等。

1.3.1 梯度下降

梯度下降通过计算损失函数对模型参数的导数,逐步调整参数,使损失函数最小化。

import numpy as np

# 定义损失函数
def loss_function(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 梯度下降优化
def gradient_descent(X, y, learning_rate=0.01, epochs=1000):
    m, n = X.shape
    theta = np.zeros(n)
    for epoch in range(epochs):
        gradient = (1/m) * X.T.dot(X.dot(theta) - y)
        theta -= learning_rate * gradient
    return theta

# 训练模型
theta = gradient_descent(X_train, y_train)
1.3.2 随机梯度下降

随机梯度下降在每次迭代中使用一个样本进行参数更新,具有较快的收敛速度和更好的泛化能力。

def stochastic_gradient_descent(X, y, learning_rate=0.01, epochs=1000):
    m, n = X.shape
    theta = np.zeros(n)
    for epoch in range(epochs):
        for i in range(m):
            gradient = X[i].dot(theta) - y[i]
            theta -= learning_rate * gradient * X[i]
    return theta

# 训练模型
theta = stochastic_gradient_descent(X_train, y_train)
1.3.3 Adam优化器

Adam优化器结合了动量和自适应学习率的优点,能够快速有效地优化模型参数。

from keras.optimizers import Adam

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

1.4 模型评估与性能优化

模型评估是衡量模型在测试数据上的表现,通过计算模型的准确率、召回率、F1-score等指标,评估模型的性能。性能优化包括调整超参数、增加数据量和模型集成等方法。

1.4.1 模型评估指标

常见的模型评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1-score等。

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')
1.4.2 超参数调优

通过网格搜索(Grid Search

)和随机搜索(Random Search)等方法,对模型的超参数进行调优,找到最优的参数组合。

from sklearn.model_selection import GridSearchCV

# 定义超参数网格
param_grid = {
    'max_depth': [3, 5, 7, 10],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}

# 网格搜索
grid_search = GridSearchCV(estimator=DecisionTreeClassifier(), param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)

# 输出最优参数
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = DecisionTreeClassifier(**best_params)
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
1.4.3 增加数据量

通过数据增强和采样技术,增加训练数据量,提高模型的泛化能力和预测性能。

from imblearn.over_sampling import SMOTE

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

# 训练模型
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
1.4.4 模型集成

通过模型集成的方法,将多个模型的预测结果进行组合,提高模型的稳定性和预测精度。常见的模型集成方法包括Bagging、Boosting和Stacking等。

from sklearn.ensemble import VotingClassifier

# 构建模型集成
ensemble_model = VotingClassifier(estimators=[
    ('lr', LogisticRegression()),
    ('dt', DecisionTreeClassifier()),
    ('rf', RandomForestClassifier())
], voting='soft')

# 训练集成模型
ensemble_model.fit(X_train, y_train)

# 预测与评估
y_pred = ensemble_model.predict(X_test)

第二章:疾病预测的具体案例分析

2.1 糖尿病预测

糖尿病是一种常见的慢性疾病,通过早期预测,可以有效预防和控制糖尿病的发展。以下是使用机器学习技术进行糖尿病预测的具体案例分析。

2.1.1 数据预处理

首先,对糖尿病数据集进行预处理,包括数据清洗、归一化和特征工程。

# 加载糖尿病数据集
data = pd.read_csv('diabetes.csv')

# 数据清洗
data.fillna(data.mean(), inplace=True)
data = data[(np.abs(data - data.mean()) <= (3 * data.std()))]
data.drop_duplicates(inplace=True)

# 数据归一化
scaler = StandardScaler()
data_normalized = scaler.fit_transform(data)

# 特征选择
correlation_matrix = data.corr()
selected_features = correlation_matrix.index[abs(correlation_matrix["Outcome"]) > 0.1]

# 主成分分析
pca = PCA(n_components=5)
data_pca = pca.fit_transform(data[selected_features])

# 数据分割
X = data_pca
y = data["Outcome"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
2.1.2 模型选择与训练

选择合适的模型进行训练,这里以随机森林为例。

# 训练随机森林模型
model = RandomForestClassifier()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
2.1.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')

# 超参数调优
param_grid = {
    'n_estimators': [50, 100, 150],
    'max_depth': [3, 5, 7, 10],
    'min_samples_split': [2, 5, 10]
}
grid_search = GridSearchCV(estimator=RandomForestClassifier(), param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = RandomForestClassifier(**best_params)
model.fit(X_train, y_train)

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Optimized Accuracy: {accuracy}')
print(f'Optimized Precision: {precision}')
print(f'Optimized Recall: {recall}')
print(f'Optimized F1-score: {f1}')

2.2 心脏病预测

心脏病是威胁人类健康的主要疾病之一,通过机器学习技术,可以实现对心脏病的早期预测和风险评估。以下是心脏病预测的具体案例分析。

2.2.1 数据预处理
# 加载心脏病数据集
data = pd.read_csv('heart_disease.csv')

# 数据清洗
data.fillna(data.mean(), inplace=True)
data = data[(np.abs(data - data.mean()) <= (3 * data.std()))]
data.drop_duplicates(inplace=True)

# 数据归一化
scaler = StandardScaler()
data_normalized = scaler.fit_transform(data)

# 特征选择
correlation_matrix = data.corr()
selected_features = correlation_matrix.index[abs(correlation_matrix["target"]) > 0.1]

# 主成分分析
pca = PCA(n_components=5)
data_pca = pca.fit_transform(data[selected_features])

# 数据分割
X = data_pca
y = data["target"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
2.2.2 模型选择与训练

选择合适的模型进行训练,这里以支持向量机为例。

# 训练支持向量机模型
model = SVC()
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
2.2.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')

# 超参数调优
param_grid = {
    'C': [0.1, 1, 10],
    'gamma': [0.001, 0.01, 0.1],
    'kernel': ['linear', 'rbf']
}
grid_search = GridSearchCV(estimator=SVC(), param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = SVC(**best_params)
model.fit(X_train, y_train)

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f'Optimized Accuracy: {accuracy}')
print(f'Optimized Precision: {precision}')
print(f'Optimized Recall: {recall}')
print(f'Optimized F1-score: {f1}')

2.3 肺癌预测

肺癌是全球范围内发病率和死亡率较高的癌症之一,通过机器学习技术,可以实现对肺癌的早期预测和精准诊断。以下是肺癌预测的具体案例分析。

2.3.1 数据预处理
# 加载肺癌数据集
data = pd.read_csv('lung_cancer.csv')

# 数据清洗
data.fill

na(data.mean(), inplace=True)
data = data[(np.abs(data - data.mean()) <= (3 * data.std()))]
data.drop_duplicates(inplace=True)

# 数据归一化
scaler = StandardScaler()
data_normalized = scaler.fit_transform(data)

# 特征选择
correlation_matrix = data.corr()
selected_features = correlation_matrix.index[abs(correlation_matrix["diagnosis"]) > 0.1]

# 主成分分析
pca = PCA(n_components=5)
data_pca = pca.fit_transform(data[selected_features])

# 数据分割
X = data_pca
y = data["diagnosis"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
2.3.2 模型选择与训练

选择合适的模型进行训练,这里以神经网络为例。

# 构建神经网络模型
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=X_train.shape[1]))
model.add(Dense(units=32, activation='relu'))
model.add(Dense(units=1, activation='sigmoid'))

# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)
2.3.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Accuracy: {accuracy}')

# 超参数调优
from keras.optimizers import Adam
model.compile(optimizer=Adam(learning_rate=0.001), loss='binary_crossentropy', metrics=['accuracy'])

# 数据增强
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)
model.fit(X_resampled, y_resampled, epochs=10, batch_size=32, validation_split=0.2)

# 预测与评估
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Optimized Accuracy: {accuracy}')

第三章:性能优化与前沿研究

3.1 性能优化

3.1.1 特征工程

通过特征选择、特征提取和特征构造,优化模型的输入,提高模型的性能。

from sklearn.feature_selection import SelectKBest, f_classif

# 特征选择
selector = SelectKBest(score_func=f_classif, k=10)
X_selected = selector.fit_transform(X, y)
3.1.2 超参数调优

通过网格搜索和随机搜索,找到模型的最优超参数组合。

from sklearn.model_selection import RandomizedSearchCV

# 随机搜索
param_dist = {
    'n_estimators': [50, 100, 150],
    'max_depth': [3, 5, 7, 10],
    'min_samples_split': [2, 5, 10]
}
random_search = RandomizedSearchCV(estimator=RandomForestClassifier(), param_distributions=param_dist, n_iter=10, cv=5, scoring='accuracy')
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = RandomForestClassifier(**best_params)
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
3.1.3 模型集成

通过模型集成,提高模型的稳定性和预测精度。

from sklearn.ensemble import StackingClassifier

# 构建模型集成
stacking_model = StackingClassifier(estimators=[
    ('lr', LogisticRegression()),
    ('dt', DecisionTreeClassifier()),
    ('rf', RandomForestClassifier())
], final_estimator=LogisticRegression())

# 训练集成模型
stacking_model.fit(X_train, y_train)

# 预测与评估
y_pred = stacking_model.predict(X_test)

3.2 前沿研究

3.2.1 深度学习在医疗健康中的应用

深度学习在医疗健康中的应用包括医学图像分析、基因数据分析和个性化治疗等。

3.2.2 联邦学习与隐私保护

联邦学习通过在不交换数据的情况下进行联合建模,保护数据隐私,提高模型的安全性和公平性。

3.2.3 强化学习在医疗决策中的应用

强化学习通过与环境的交互,不断优化决策策略,在医疗决策和治疗方案优化中具有广泛的应用前景。
在这里插入图片描述

结语

机器学习作为医疗健康领域的重要技术,已经在多个应用场景中取得了显著的成果。通过对数据的深入挖掘和模型的不断优化,机器学习技术将在疾病预测、诊断和治疗中发挥更大的作用,推动医疗健康事业的发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1892969.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【c++】C++ IO流

本专栏内容为&#xff1a;C学习专栏&#xff0c;分为初阶和进阶两部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握C。 &#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;C &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&…

使用Vue CLI方式创建Vue3.0应用程序

Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统。新版本的 Vue CLI 的包名由原来的 vue-cli 改成了 vue/cli。 在开发大型项目时&#xff0c;需要考虑项目的组织结构、项目构建和部署等问题。如果手动完成这些配置工作&#xff0c;工作效率会非常低。为此&#xff0c;Vue.…

嵌入式Linux系统编程 — 6.5 获取信号的描述信息

目录 1 strsignal()函数 2 psignal()函数 在 Linux 下&#xff0c;每个信号都有一串与之相对应的字符串描述信息&#xff0c;用于对该信号进行相应的描述。这些字符串位于 sys_siglist 数组中&#xff0c; sys_siglist 数组是一个 char *类型的数组&#xff0c;数组中的每一个…

《软件需求》读书笔记

商业的本质是供需和交换。软件行业也一样&#xff0c;生产别人所需要的软件并获得相应回报&#xff0c;就是成功。《软件需求》这本书是一本软件需求领域的工具书&#xff0c;很全面且具体&#xff0c;可以跳读。 在我所工作或了解的软件公司中&#xff0c;发现不论是初创企业…

一个R包完成单细胞基因集富集分析 (全代码)

singleseqgset是用于单细胞RNA-seq数据的基因集富集分析的软件包。它使用简单的基础统计量&#xff08;variance inflated Wilcoxon秩和检验&#xff09;来确定不同cluster中感兴趣的基因集的富集。 Installation library(devtools) install_github("arc85/singleseqgse…

heic文件怎么转换成jpg?苹果手机照片格式heic怎么改jpg?2024新软件!

HEIC作为一种苹果设备的特殊独有图片格式&#xff0c;以其高效节省存储空间的特性&#xff0c;迅速成为苹果手机用户的首选。然而&#xff0c;对于非苹果用户或需要在Windows系统上查看这些照片的用户来说&#xff0c;HEIC格式却带来了诸多不便。因此&#xff0c;本文将详细介绍…

MySQL的安装和环境配置

1.下载MySQL安装MySQL 选Custom选项为高级自定义模式 2.配置MySQL环境 安装好之后&#xff0c;在桌面右键点击我的电脑(有些是此电脑)&#xff0c;然后点击属性&#xff0c;进入系统信息设置&#xff0c;接着点击高级&#xff0c;进入环境变量界面&#xff0c;进入环境变量界面…

MySQL 如何实现将数据实时同步到 ES ?

引言&#xff1a;在现代应用程序开发中&#xff0c;通常会将数据存储在 MySQL 中&#xff0c;用于事务性处理和数据持久化。而 Elasticsearch&#xff08;ES&#xff09;则是一种专门用于全文搜索和分析的强大工具。将这两者结合使用的一个常见需求是实时将 MySQL 中的数据同步…

JAVA导出数据库字典到Excel

文章目录 1、查询某张表字段信息2、TableVo接收sql查询得到的数据3、excel导出4、导出案例 1、查询某张表字段信息 select column_name as columnName, -- 字段名 COLUMN_DEFAULT as colDefault, -- 默认值 column_key as columnKey, -- PRI-主键&#xff0c;UNI-唯一键&…

新能源组合灶,一灶两用(电燃灶+电陶炉),电生明火,无需燃料

在科技日新月异的今天&#xff0c;厨房电器的创新不断为我们的生活带来便捷与惊喜。华火新能源电燃灶&#xff0c;以其独特的设计和卓越的性能&#xff0c;成为未来厨房的首选&#xff0c;为您打造全新的烹饪体验。 中国人的烹饪文化源远流长&#xff0c;讲究火候的掌控和明火烹…

linux centos tomcat 不安全的HTTP请求方法

1、页面查看 2、在linux主机可使用此命令查看 curl -v -X OPTIONS http://实际地址 3、进入tomcat conf目录vim web.xml&#xff0c;增加以下内容 <!-- close insecure http methods --> <security-constraint><web-resource-collection><web-resource…

Java SpringBoot MongoPlus 使用MyBatisPlus的方式,优雅的操作MongoDB

Java SpringBoot MongoPlus 使用MyBatisPlus的方式&#xff0c;优雅的操作MongoDB 介绍特性安装新建SpringBoot工程引入依赖配置文件 使用新建实体类创建Service测试类进行测试新增方法查询方法 官方网站获取本项目案例代码 介绍 Mongo-Plus&#xff08;简称 MP&#xff09;是一…

AI写作神器大揭秘:五款你不可错过的AI写作工具

在现实生活中&#xff0c;除了专业的文字工作者&#xff0c;各行各业都避免不了需要写一些东西&#xff0c;比如策划案、论文、公文、讲话稿、总结计划……等等。而随着科技的进步&#xff0c;数字化时代的深入发展&#xff0c;AI已经成为日常工作中必不可少的工具了&#xff0…

Cesium 立式雷达扫描

Cesium 立式雷达扫描 自定义 Primitive 实现支持水平和垂直交替扫描

WebKey备受瞩目的Web3.0新叙事,硬件与加密生态完美融合特性成为数字世界的新入口

在当今迅速发展的科技领域&#xff0c;Web3.0正在引领一场颠覆性的变革。而作为这一变革的先锋&#xff0c;WebKey无疑是备受瞩目的创新项目。它不仅代表了一种全新的技术趋势&#xff0c;更是数字世界中硬件与加密生态完美融合的典范。 硬件与加密生态的完美融合 WebKey的核心…

海豚调度监控:新增依赖缺失巡检,上游改动再也不用担心了!

&#x1f4a1; 本系列文章是 DolphinScheduler 由浅入深的教程&#xff0c;涵盖搭建、二开迭代、核心原理解读、运维和管理等一系列内容。适用于想对 DolphinScheduler了解或想要加深理解的读者。 祝开卷有益:) 用过 DolphinScheduler 的小伙伴应该都知道&#xff0c;Dolphin…

Echarts中的折线图,多个Y轴集中在左侧(在Vue中使用多个Y轴的折线图)

简述&#xff1a;在 ECharts 中&#xff0c;创建一个带有多个 Y 轴的折线图&#xff0c;并且将这些 Y 轴都集中显示在图表的左侧&#xff0c;可以通过合理配置 yAxis 和 series 的属性来实现。简单记录 一. 函数代码 drawCarNumEcs() {// 初始化echarts图表,并绑定到id为"…

Vue组件如何“传话”?这里有个小秘诀!

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来vue篇专栏内容:vue-组件通信 目录 Vue组件通信 &#xff08;1&#xff09; props / $emit 1. 父组件向子组件传…

【HDC.2024】探索无限可能:华为云区块链+X,创新融合新篇章

6月23日&#xff0c;华为开发者大会2024&#xff08;HDC 2024&#xff09;期间&#xff0c; “「区块链X」多元行业场景下的创新应用”分论坛在东莞松山湖举行&#xff0c;区块链技术再次成为焦点。本次论坛以"区块链X"为主题&#xff0c;集结了行业专家、技术领袖、…

使用Scrapy进行网络爬取时的缓存策略与User-Agent管理

缓存策略的重要性 缓存策略在网络爬虫中扮演着至关重要的角色。合理利用缓存可以显著减少对目标网站的请求次数&#xff0c;降低服务器负担&#xff0c;同时提高数据抓取的效率。Scrapy提供了多种缓存机制&#xff0c;包括HTTP缓存和Scrapy内置的缓存系统。 HTTP缓存 HTTP缓…