从 JDK1.9 开始默认 G1,应用在多处理器和大容量内存环境中。
基础概念
Region
G1 给整一块Heap内存区域均匀等分了N个 Region,N 默认情况下是 2048。
Region的大小只能是1M、2M、4M、8M、16M或32M (1-32M,并且为2的指数),比如-Xmx16g -Xms16g,G1就会采用16G / 2048 = 8M 的Region。
G1 的常用参数很简单,主要有下面几个
- -XX:+UseG1GC:为开启G1垃圾收集器
- -Xmx32g:堆内存的最大内存为32G
- XX:MaxGCPauseMillis=200: 设置GC的最大暂停时间为200ms
- -XX:G1HeapRegionSize: 设置每个region大小
一般的调优手段是修改最大暂停时间。同时,如果能预测到项目中大对象比较多,可以设置较大的region值。
H 表示 Humongous,大的对象,当分配的对象大于等于Region大小的一半的时候就会被认为是巨型对象。
H对象默认分配在老年代,可以防止GC的时候大对象的内存拷贝。
通过如果发现堆内存容不下H对象的时候,会触发一次GC操作。
SATB
全称是 Snapshot At The Beginning,是GC开始时活着的对象的一个快照。它是通过 Root Tracing 得到的,作用是维持并发GC的正确性。
三色标记算法
可达性分析进一步延伸出三色标记法。通常,GC 算法会维持一套对象图,图上节点表示对象,节点之间的连线表示对象间的引用关系,其中:
- 白色节点:尚未被标记的对象;
- 黑色节点:已经被垃圾收集器访问过,且这个对象的引用全部被扫描过;
- 灰色节点:已经被垃圾收集器访问过,且这个对象至少还有一个引用没被扫描;
RSet
由于并发标记期间,用户线程和GC线程是并发的,可能出现白对象漏标的情况。漏标发生有两个前提:
- 用户线程赋值了一个黑对象到该白对象的引用
- 用户线程删除了所有灰对象到白对象的引用
例如当垃圾扫描器扫描到下面的情况的时候:
这时候应用程序执行了以下操作:
A.c=C
B.c=null
这样,对象的状态图变成如下情形:
这时候垃圾收集器再标记扫描的时候就会下图成这样:
很显然,此时C是白色,被认为是垃圾需要清理掉,显然这是不合理的。那么我们如何保证应用程序在运行的时候,GC标记的对象不丢失呢?有如下2中可行的方式:
- 在插入的时候记录对象
- 在删除的时候记录对象
刚好这对应CMS和G1的2种不同实现方式:
CMS采用的是 写屏障+增量更新(Incremental update)
在CMS采用的是增量更新(Incremental update),只要在写屏障(write barrier)里发现要有一个白对象的引用被赋值到一个黑对象的字段里,那就把这个白对象变成灰色的。即插入的时候记录下来。
G1采用的是 SATB(snapshot-at-the-beginning),pre-write barrier 解决这个问题。简单说就是在并发标记阶段,当引用关系发生变化的时候,通过 pre-write barrier 函数会把这种这种变化记录并保存在一个队列里,在JVM源码中这个队列叫satb_mark_queue。在remark阶段会扫描这个队列,通过这种方式,旧的引用所指向的对象就会被标记上,其子孙也会被递归标记上,这样就不会漏标记任何对象,snapshot的完整性也就得到了保证。
引用 R 大的话
其实只需要用pre-write barrier把每次引用关系变化时旧的引用值记下来就好了。这样,等concurrent marker到达某个对象时,这个对象的所有引用类型字段的变化全都有记录在案,就不会漏掉任何在snapshot里活的对象。当然,很可能有对象在snapshot中是活的,但随着并发GC的进行它可能本来已经死了,但SATB还是会让它活过这次GC。CMS的incremental update设计使得它在remark阶段必须重新扫描所有线程栈和整个young gen作为root;G1的SATB设计在remark阶段则只需要扫描剩下的satb_mark_queue ,解决了CMS垃圾收集器重新标记阶段长时间STW的潜在风险。
SATB的方式记录活对象,也就是那一时刻对象snapshot, 但是在之后这里面的对象可能会变成垃圾, 叫做浮动垃圾(floating garbage),这种对象只能等到下一次收集回收掉。在GC过程中新分配的对象都当做是活的,其他不可达的对象就是死的。
在Region中通过 top-at-mark-start(TAMS)指针,分别为 prevTAMS 和 nextTAMS 来记录新配的对象。示意图如下:
在TAMS以上的对象就是新分配的,因而被视为隐式marked。
G1的concurrent marking用了两个bitmap: 一个prevBitmap记录第n-1轮concurrent marking所得的对象存活状态。由于第n-1轮concurrent marking已经完成,这个bitmap的信息可以直接使用。 一个nextBitmap记录第n轮concurrent marking的结果。这个bitmap是当前将要或正在进行的concurrent marking的结果,尚未完成,所以还不能使用。
其中top是该region的当前分配指针,[bottom, top)是当前该region已用(used)的部分,[top, end)是尚未使用的可分配空间(unused)。
- [bottom, prevTAMS): 这部分里的对象存活信息可以通过prevBitmap来得知
- [prevTAMS, nextTAMS): 这部分里的对象在第n-1轮concurrent marking是隐式存活的
- [nextTAMS, top): 这部分里的对象在第n轮concurrent marking是隐式存活的
- G1 Mixed GC
混合回收。之所以叫混合是因为回收所有的年轻代的Region+部分老年代的Region。
G1的强大之处在于他有一个停顿预测模型(Pause Prediction Model),他会有选择的挑选部分Region,去尽量满足停顿时间。
Mixed GC的触发也是由一些参数控制。比如 XX:InitiatingHeapOccupancyPercent 表示老年代占整个堆大小的百分比,默认值是45%,达到该阈值就会触发一次Mixed GC。
Mixed GC主要可以分为两个阶段:
- 全局并发标记(global concurrent marking)
全局并发标记又可以进一步细分成下面几个步骤:
a. 初始标记(initial mark,STW)。它标记了从GC Root开始直接可达的对象。初始标记阶段借用young GC的暂停,因而没有额外的、单独的暂停阶段。
b. 根区域扫描(root region scan)。G1 GC 在初始标记的存活区扫描对老年代的引用(扫描CardTable和RSet),并标记被引用的对象。该阶段与应用程序(非STW)同时运行,并且只有完成该阶段后,才能开始下一次STW年轻代垃圾回收。
c. 并发标记(Concurrent Marking)。这个阶段从GC Root开始对heap中的对象标记,标记线程与应用程序线程并行执行,并且收集各个Region的存活对象信息。过程中还会扫描上文中提到的SATB write barrier所记录下的引用。
d. 最终标记(Remark,STW)。标记那些在并发标记阶段发生变化的对象,将被回收。
e. 清除垃圾(Cleanup,部分STW)。这个阶段如果发现完全没有活对象的region就会将其整体回收到可分配region列表中。 清除空Region。
- 拷贝存活对象(Evacuation)
Evacuation阶段是全暂停的。它负责把一部分region里的活对象拷贝到空region里去(并行拷贝),然后回收原本的region的空间。Evacuation阶段可以自由选择任意多个region来独立收集构成收集集合(collection set,简称CSet),CSet集合中Region的选定依赖于上文中提到的停顿预测模型,该阶段并不evacuate所有有活对象的region,只选择收益高的少量region来evacuate,这种暂停的开销就可以(在一定范围内)可控。
- Full GC
G1的垃圾回收过程是和应用程序并发执行的,当Mixed GC的速度赶不上应用程序申请内存的速度的时候,Mixed G1就会降级到Full GC,使用的是Serial GC。Full GC会导致长时间的STW,应该要尽量避免。
导致G1 Full GC的原因可能有两个:
- Evacuation的时候没有足够的to-space来存放晋升的对象;
- 并发处理过程完成之前空间耗尽