Promethuse-监控 Etcd

news2024/12/22 17:03:09

一、思路

Prometheus监控Etcd集群,是没有对应的exporter,而 由CoreOS公司开发的Operator,用来扩展 Kubernetes API,特定的应用程序控制器,它用来创建、配置和管理复杂的有状态应用,如数据库、缓存和监控系统,可以实现监控etcd。

用自定义的方式来对 Kubernetes 集群进行监控,但是还是有一些缺陷,比如 Prometheus、AlertManager 这些组件服务本身的高可用,当然我们也完全可以用自定义的方式来实现这些需求,我们也知道 Prometheus 在代码上就已经对 Kubernetes 有了原生的支持,可以通过服务发现的形式来自动监控集群,因此我们可以使用另外一种更加高级的方式来部署 Prometheus:Operator 框架。

安装方法:

第一步 安装 Prometheus Operator

第二步建立一个 ServiceMonitor 对象,用于 Prometheus 添加监控项

第三步为 ServiceMonitor 对象关联 metrics 数据接口的一个 Service 对象

第四步确保 Service 对象可以正确获取到 metrics 数据

二、安装 Prometheus Operator

Operator是由CoreOS公司开发的,用来扩展 Kubernetes API,特定的应用程序控制器,它用来创建、配置和管理复杂的有状态应用,如数据库、缓存和监控系统。Operator基于 Kubernetes 的资源和控制器概念之上构建,但同时又包含了应用程序特定的一些专业知识,比如创建一个数据库的Operator,则必须对创建的数据库的各种运维方式非常了解,创建Operator的关键是CRD(自定义资源)的设计。

CRD是对 Kubernetes API 的扩展,Kubernetes 中的每个资源都是一个 API 对象的集合,例如我们在YAML文件里定义的那些spec都是对 Kubernetes 中的资源对象的定义,所有的自定义资源可以跟 Kubernetes 中内建的资源一样使用 kubectl 操作。

Operator是将运维人员对软件操作的知识给代码化,同时利用 Kubernetes 强大的抽象来管理大规模的软件应用。目前CoreOS官方提供了几种Operator的实现,其中就包括我们今天的主角:Prometheus OperatorOperator的核心实现就是基于 Kubernetes 的以下两个概念:

  • 资源:对象的状态定义
  • 控制器:观测、分析和行动,以调节资源的分布

当然我们如果有对应的需求也完全可以自己去实现一个Operator,接下来我们就来给大家详细介绍下Prometheus-Operator的使用方法。

介绍

首先我们先来了解下Prometheus-Operator的架构图:

上图是Prometheus-Operator官方提供的架构图,其中Operator是最核心的部分,作为一个控制器,他会去创建PrometheusServiceMonitorAlertManager以及PrometheusRule4个CRD资源对象,然后会一直监控并维持这4个资源对象的状态。

其中创建的prometheus这种资源对象就是作为Prometheus Server存在,而ServiceMonitor就是exporter的各种抽象,exporter前面我们已经学习了,是用来提供专门提供metrics数据接口的工具,Prometheus就是通过ServiceMonitor提供的metrics数据接口去 pull 数据的,当然alertmanager这种资源对象就是对应的AlertManager的抽象,而PrometheusRule是用来被Prometheus实例使用的报警规则文件。

这样我们要在集群中监控什么数据,就变成了直接去操作 Kubernetes 集群的资源对象了,是不是方便很多了。上图中的 Service 和 ServiceMonitor 都是 Kubernetes 的资源,一个 ServiceMonitor 可以通过 labelSelector 的方式去匹配一类 Service,Prometheus 也可以通过 labelSelector 去匹配多个ServiceMonitor。

安装

我们这里直接通过 Prometheus-Operator 的源码来进行安装,当然也可以用 Helm 来进行一键安装,我们采用源码安装可以去了解更多的实现细节。首页将源码 Clone 下来:GitHub - prometheus-operator/prometheus-operator: Prometheus Operator creates/configures/manages Prometheus clusters atop Kubernetes

注意版本,由于我的k8s是1.21,所以选择了release-0.9

$ git clone https://github.com/coreos/kube-prometheus.git
$ cd manifests
$ ls
00namespace-namespace.yaml                                         node-exporter-clusterRole.yaml
0prometheus-operator-0alertmanagerCustomResourceDefinition.yaml    node-exporter-daemonset.yaml
......

最新的版本官方将资源prometheus-operator/contrib/kube-prometheus at main · prometheus-operator/prometheus-operator · GitHub迁移到了独立的 git 仓库中:GitHub - prometheus-operator/kube-prometheus: Use Prometheus to monitor Kubernetes and applications running on Kubernetes

注意,老版本中进入到 manifests 目录下面,这个目录下面包含我们所有的资源清单文件, prometheus-serviceMonitorKubelet.yaml 默认情况下,这个 ServiceMonitor 是关联的 kubelet 的10250端口去采集的节点数据,如果这个 metrics 数据已经迁移到其他只读端口上面去了,数据已经迁移到10255这个只读端口上面去了,我们只需要将文件中的https-metrics更改成http-metrics即可,这个在 Prometheus-Operator 对节点端点同步的代码中有相关定义,感兴趣的可以点此查看完整代码:

Subsets: []v1.EndpointSubset{
    {
        Ports: []v1.EndpointPort{
            {
                Name: "https-metrics",
                Port: 10250,
            },
            {
                Name: "http-metrics",
                Port: 10255,
            },
            {
                Name: "cadvisor",
                Port: 4194,
            },
        },
    },
},

正式部署:

[root@master prometheus-operator]# kubectl get node
NAME      STATUS   ROLES                  AGE    VERSION
master    Ready    control-plane,master   514d   v1.21.1
slave01   Ready    <none>                 513d   v1.21.1
slave02   Ready    <none>                 513d   v1.21.1

unzip kube-prometheus-release-0.9.zip
cd kube-prometheus-release-0.9/

注意,一定先部署manifests/setup,否则会如下错误

[root@master kube-prometheus-release-0.8]# kubectl create -f manifests/setup
customresourcedefinition.apiextensions.k8s.io/alertmanagerconfigs.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/alertmanagers.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/podmonitors.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/probes.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/prometheuses.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/prometheusrules.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/servicemonitors.monitoring.coreos.com created
customresourcedefinition.apiextensions.k8s.io/thanosrulers.monitoring.coreos.com created
clusterrole.rbac.authorization.k8s.io/prometheus-operator created
clusterrolebinding.rbac.authorization.k8s.io/prometheus-operator created
deployment.apps/prometheus-operator created
service/prometheus-operator created
serviceaccount/prometheus-operator created

​
[root@master kube-prometheus-release-0.8]# kubectl get pod -A -owide -n monitoring
NAMESPACE        NAME                                             READY   STATUS    RESTARTS   AGE     IP               NODE      NOMINATED NODE   READINESS GATES
monitoring       prometheus-operator-7775c66ccf-mwtx6             2/2     Running   0          54s     172.7.1.36       slave01   <none>           <none>

[root@master kube-prometheus-release-0.8]# kubectl create -f manifests/

alertmanager.monitoring.coreos.com/main created
Warning: policy/v1beta1 PodDisruptionBudget is deprecated in v1.21+, unavailable in v1.25+; use policy/v1 PodDisruptionBudget
poddisruptionbudget.policy/alertmanager-main created
prometheusrule.monitoring.coreos.com/alertmanager-main-rules created
secret/alertmanager-main created
service/alertmanager-main created
serviceaccount/alertmanager-main created
servicemonitor.monitoring.coreos.com/alertmanager created
clusterrole.rbac.authorization.k8s.io/blackbox-exporter created
clusterrolebinding.rbac.authorization.k8s.io/blackbox-exporter created
configmap/blackbox-exporter-configuration created
deployment.apps/blackbox-exporter created
service/blackbox-exporter created
serviceaccount/blackbox-exporter created
servicemonitor.monitoring.coreos.com/blackbox-exporter created
secret/grafana-datasources created
configmap/grafana-dashboard-apiserver created
configmap/grafana-dashboard-cluster-total created
configmap/grafana-dashboard-controller-manager created
configmap/grafana-dashboard-k8s-resources-cluster created
configmap/grafana-dashboard-k8s-resources-namespace created
configmap/grafana-dashboard-k8s-resources-node created
configmap/grafana-dashboard-k8s-resources-pod created
configmap/grafana-dashboard-k8s-resources-workload created
configmap/grafana-dashboard-k8s-resources-workloads-namespace created
configmap/grafana-dashboard-kubelet created
configmap/grafana-dashboard-namespace-by-pod created
configmap/grafana-dashboard-namespace-by-workload created
configmap/grafana-dashboard-node-cluster-rsrc-use created
configmap/grafana-dashboard-node-rsrc-use created
configmap/grafana-dashboard-nodes created
configmap/grafana-dashboard-persistentvolumesusage created
configmap/grafana-dashboard-pod-total created
configmap/grafana-dashboard-prometheus-remote-write created
configmap/grafana-dashboard-prometheus created
configmap/grafana-dashboard-proxy created
configmap/grafana-dashboard-scheduler created
configmap/grafana-dashboard-statefulset created
configmap/grafana-dashboard-workload-total created
configmap/grafana-dashboards created
deployment.apps/grafana created
service/grafana created
serviceaccount/grafana created
servicemonitor.monitoring.coreos.com/grafana created
prometheusrule.monitoring.coreos.com/kube-prometheus-rules created
clusterrole.rbac.authorization.k8s.io/kube-state-metrics created
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created
deployment.apps/kube-state-metrics created
prometheusrule.monitoring.coreos.com/kube-state-metrics-rules created
service/kube-state-metrics created
serviceaccount/kube-state-metrics created
servicemonitor.monitoring.coreos.com/kube-state-metrics created
prometheusrule.monitoring.coreos.com/kubernetes-monitoring-rules created
servicemonitor.monitoring.coreos.com/kube-apiserver created
servicemonitor.monitoring.coreos.com/coredns created
servicemonitor.monitoring.coreos.com/kube-controller-manager created
servicemonitor.monitoring.coreos.com/kube-scheduler created
servicemonitor.monitoring.coreos.com/kubelet created
clusterrole.rbac.authorization.k8s.io/node-exporter created
clusterrolebinding.rbac.authorization.k8s.io/node-exporter created
daemonset.apps/node-exporter created
prometheusrule.monitoring.coreos.com/node-exporter-rules created
service/node-exporter created
serviceaccount/node-exporter created
servicemonitor.monitoring.coreos.com/node-exporter created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created
clusterrole.rbac.authorization.k8s.io/prometheus-adapter created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrolebinding.rbac.authorization.k8s.io/prometheus-adapter created
clusterrolebinding.rbac.authorization.k8s.io/resource-metrics:system:auth-delegator created
clusterrole.rbac.authorization.k8s.io/resource-metrics-server-resources created
configmap/adapter-config created
deployment.apps/prometheus-adapter created
poddisruptionbudget.policy/prometheus-adapter created
rolebinding.rbac.authorization.k8s.io/resource-metrics-auth-reader created
service/prometheus-adapter created
serviceaccount/prometheus-adapter created
servicemonitor.monitoring.coreos.com/prometheus-adapter created
clusterrole.rbac.authorization.k8s.io/prometheus-k8s created
clusterrolebinding.rbac.authorization.k8s.io/prometheus-k8s created
prometheusrule.monitoring.coreos.com/prometheus-operator-rules created
servicemonitor.monitoring.coreos.com/prometheus-operator created
poddisruptionbudget.policy/prometheus-k8s created
prometheus.monitoring.coreos.com/k8s created
prometheusrule.monitoring.coreos.com/prometheus-k8s-prometheus-rules created
rolebinding.rbac.authorization.k8s.io/prometheus-k8s-config created
rolebinding.rbac.authorization.k8s.io/prometheus-k8s created
rolebinding.rbac.authorization.k8s.io/prometheus-k8s created
rolebinding.rbac.authorization.k8s.io/prometheus-k8s created
role.rbac.authorization.k8s.io/prometheus-k8s-config created
role.rbac.authorization.k8s.io/prometheus-k8s created
role.rbac.authorization.k8s.io/prometheus-k8s created
role.rbac.authorization.k8s.io/prometheus-k8s created
service/prometheus-k8s created
serviceaccount/prometheus-k8s created
servicemonitor.monitoring.coreos.com/prometheus-k8s created

部署完成后,会创建一个名为monitoring的 namespace,所以资源对象对将部署在改命名空间下面,此外 Operator 会自动创建8个 CRD 资源对象:

[root@master kube-prometheus-release-0.8]# kubectl get crd |grep coreos
alertmanagerconfigs.monitoring.coreos.com   2024-06-28T17:03:27Z
alertmanagers.monitoring.coreos.com         2024-06-28T17:03:27Z
podmonitors.monitoring.coreos.com           2024-06-28T17:03:27Z
probes.monitoring.coreos.com                2024-06-28T17:03:27Z
prometheuses.monitoring.coreos.com          2024-06-28T17:03:27Z
prometheusrules.monitoring.coreos.com       2024-06-28T17:03:27Z
servicemonitors.monitoring.coreos.com       2024-06-28T17:03:28Z
thanosrulers.monitoring.coreos.com          2024-06-28T17:03:28Z

可以在 monitoring 命名空间下面查看所有的 Pod,其中 alertmanager 和 prometheus 是用 StatefulSet 控制器管理的,其中还有一个比较核心的 prometheus-operator 的 Pod,用来控制其他资源对象和监听对象变化的:

[root@master kube-prometheus-release-0.8]# kubectl get pods -n monitoring
NAME                                   READY   STATUS             RESTARTS   AGE
alertmanager-main-0                    2/2     Running            0          12m
alertmanager-main-1                    2/2     Running            0          12m
alertmanager-main-2                    2/2     Running            0          12m
blackbox-exporter-55c457d5fb-wn54c     3/3     Running            0          12m
grafana-6dd5b5f65-7j675                1/1     Running            0          12m
kube-state-metrics-76f6cb7996-bsdvz    3/3     Running            0          12m
node-exporter-db24s                    2/2     Running            0          12m
node-exporter-k2xd9                    2/2     Running            0          12m
node-exporter-kblxs                    2/2     Running            0          12m
prometheus-adapter-59df95d9f5-5r2gw    1/1     Running            0          12m
prometheus-adapter-59df95d9f5-6f449    1/1     Running            0          12m
prometheus-k8s-0                       2/2     Running            1          12m
prometheus-k8s-1                       2/2     Running            1          12m
prometheus-operator-7775c66ccf-mwtx6   2/2     Running            0          14m

查看创建的 Service:

[root@master kube-prometheus-release-0.8]# kubectl get svc -n monitoring
NAME                    TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                      AGE
alertmanager-main       ClusterIP   10.101.163.190   <none>        9093/TCP                     21m
alertmanager-operated   ClusterIP   None             <none>        9093/TCP,9094/TCP,9094/UDP   21m
blackbox-exporter       ClusterIP   10.107.221.88    <none>        9115/TCP,19115/TCP           21m
grafana                 ClusterIP   10.109.100.129   <none>        3000/TCP                     21m
kube-state-metrics      ClusterIP   None             <none>        8443/TCP,9443/TCP            21m
node-exporter           ClusterIP   None             <none>        9100/TCP                     21m
prometheus-adapter      ClusterIP   10.108.203.228   <none>        443/TCP                      21m
prometheus-k8s          ClusterIP   10.104.101.86    <none>        9090/TCP                     21m
prometheus-operated     ClusterIP   None             <none>        9090/TCP                     21m
prometheus-operator     ClusterIP   None             <none>        8443/TCP                     23m

可以看到上面针对 grafana 和 prometheus 都创建了一个类型为 ClusterIP 的 Service,当然如果我们想要在外网访问这两个服务的话可以通过创建对应的 Ingress 对象或者使用 NodePort 类型的 Service,我们这里为了简单,直接使用 NodePort 类型的服务即可,编辑 grafana 和 prometheus-k8s 这两个 Service,将服务类型更改为 NodePort:

$ kubectl edit svc grafana -n monitoring
$ kubectl edit svc prometheus-k8s -n monitoring
$ kubectl get svc -n monitoring
NAME                    TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
grafana                 NodePort    10.98.191.31     <none>        3000:32333/TCP      23h
prometheus-k8s          NodePort    10.107.105.53    <none>        9090:30166/TCP      23h

或者通过ingress方式也行,这里就不多过解释

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: prometheus-k8s
  namespace: monitoring
spec:
  ingressClassName: nginx
  rules:
  - host: prometheus-k8s.od.com
    http:
      paths:
      - backend:
          service:
            name: prometheus-k8s
            port:
              number: 9090
        path: /
        pathType: Prefix

配置grafana

[root@master ~]# kubectl get svc -n monitoring
NAME                    TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)                      AGE
alertmanager-main       ClusterIP   10.98.97.216     <none>        9093/TCP                     156m
alertmanager-operated   ClusterIP   None             <none>        9093/TCP,9094/TCP,9094/UDP   156m
blackbox-exporter       ClusterIP   10.109.140.175   <none>        9115/TCP,19115/TCP           156m
grafana                 ClusterIP   10.111.120.8     <none>        3000/TCP                     156m
kube-state-metrics      ClusterIP   None             <none>        8443/TCP,9443/TCP            156m
node-exporter           ClusterIP   None             <none>        9100/TCP                     156m
prometheus-adapter      ClusterIP   10.97.255.204    <none>        443/TCP                      156m
prometheus-k8s          ClusterIP   10.100.253.0     <none>        9090/TCP                     156m
prometheus-operated     ClusterIP   None             <none>        9090/TCP                     156m
prometheus-operator     ClusterIP   None             <none>        8443/TCP                     158m
[root@master ~]# curl 10.111.120.8:3000
<a href="/login">Found</a>.

[root@master ~]# vi ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: grafana-k8s
  namespace: monitoring
spec:
  ingressClassName: nginx
  rules:
  - host: grafana-k8s.od.com
    http:
      paths:
      - backend:
          service:
            name: grafana
            port:
              number: 3000
        path: /
        pathType: Prefix


[root@master ~]# kubectl apply -f ingress.yaml
ingress.networking.k8s.io/grafana-k8s created


访问Prometheus

可以发现Prometheus Operator已经给我们监控了好多服务

通过promethues的Configuration

job_name是这些

- job_name: serviceMonitor/monitoring/alertmanager/0
- job_name: serviceMonitor/monitoring/blackbox-exporter/0
- job_name: serviceMonitor/monitoring/kube-apiserver/0
- job_name: serviceMonitor/monitoring/kube-state-metrics/0
- job_name: serviceMonitor/monitoring/kube-state-metrics/1
- job_name: serviceMonitor/monitoring/kubelet/0
- job_name: serviceMonitor/monitoring/kubelet/1
- job_name: serviceMonitor/monitoring/kubelet/2
- job_name: serviceMonitor/monitoring/node-exporter/0
- job_name: serviceMonitor/monitoring/prometheus-adapter/0
- job_name: serviceMonitor/monitoring/prometheus-k8s/0
- job_name: serviceMonitor/monitoring/prometheus-operator/0


- job_name: serviceMonitor/monitoring/kube-scheduler/0
- job_name: serviceMonitor/monitoring/kube-controller-manager/0

通过对比发现了少了kube-scheduler  kube-controller-manager。

通过查看ServerMonitor,也发现已经配置了kube-scheduler  kube-controller-manager

[root@master mnt]# kubectl get ServiceMonitor -n monitoring
NAME                      AGE
alertmanager              45h
blackbox-exporter         45h
coredns                   45h
grafana                   45h
kube-apiserver            45h
kube-controller-manager   45h
kube-scheduler            45h
kube-state-metrics        45h
kubelet                   45h
node-exporter             45h
prometheus-adapter        45h
prometheus-k8s            45h
prometheus-operator       45h

如上图中其他的服务kubelet 能被监控,是应为定义了ServiceMonitor ,而ServiceMonitor 需要跟service绑定。

[root@master ~]# kubectl get svc  -n kube-system
NAME             TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)                        AGE
kube-dns         ClusterIP   10.96.0.10      <none>        53/UDP,53/TCP,9153/TCP         516d
kubelet          ClusterIP   None            <none>        10250/TCP,10255/TCP,4194/TCP   2d11h

 kube-controller-manager 和 kube-scheduler 这两个系统组件,和 ServiceMonitor 的定义有关系,我们先来查看下 kube-scheduler 组件对应的 ServiceMonitor 资源的定义:(prometheus-serviceMonitorKubeScheduler.yaml)

kubectl get serviceMonitor kube-scheduler -n monitoring -oyaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  creationTimestamp: "2024-07-01T02:44:33Z"
  generation: 1
  labels:
    app.kubernetes.io/name: kube-scheduler  # 定义
  name: kube-scheduler
  namespace: monitoring
  resourceVersion: "879124"
  uid: 635e9c40-6aca-4b01-9c82-09e5436c0212
spec:
  endpoints:
  - bearerTokenFile: /var/run/secrets/kubernetes.io/serviceaccount/token
    interval: 30s    # 每30s获取一次信息
    port: https-metrics   # 对应service的端口名
    scheme: https
    tlsConfig:
      insecureSkipVerify: true
  jobLabel: app.kubernetes.io/name
  namespaceSelector:   # 表示去匹配某一命名空间中的service,如果想从所有的namespace中匹配用any: 
    matchNames:
    - kube-system
  selector:
    matchLabels:    匹配的 Service 的labels,如果使用mathLabels,则下面的所有标签都匹配时才会匹配该service,如果使用matchExpressions,则至少匹配一个标签的service都会被选择
      app.kubernetes.io/name: kube-scheduler

上面是一个典型的 ServiceMonitor 资源文件的声明方式,上面我们通过selector.matchLabels在 kube-system 这个命名空间下面匹配具有app.kubernetes.io/name: kube-scheduler这样的 Service,但是我们系统中根本就没有对应的 Service,所以我们需要手动创建一个 Service:(prometheus-kubeSchedulerService.yaml)

[root@master mnt]# kubectl get svc -n kube-system
NAME       TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)                        AGE
kube-dns   ClusterIP   10.96.0.10   <none>        53/UDP,53/TCP,9153/TCP         516d
kubelet    ClusterIP   None         <none>        10250/TCP,10255/TCP,4194/TCP   45h
[root@master mnt]#


[root@master mnt]#vi service.yaml
apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/name: kube-scheduler # 要跟ServiceMonitor定义一致,# 必须和上面的 ServiceMonitor 下面的 matchLabels 保持一致
  name: kube-scheduler
  namespace: kube-system
spec:
  ports:
  - name: https-metrics    # 注意这里跟ServiceMonitor中定义的名字一样
    port: 10251            # 10251是kube-scheduler组件 metrics 数据所在的端口,10252是kube-controller-manager组件的监控数据所在端口。
    protocol: TCP
    targetPort: 10251
  selector:
    component: kube-scheduler   # 此处是在spec.ports,说明selector是选择的是pod的lables,在下文这种,通过查看kube-scheduler的lables就是这也,就代表他连接的是pod kube-scheduler

[root@master mnt]#kubectl apply -f service.yaml

其中最重要的是上面 labels 和 selector 部分,labels 区域的配置必须和我们上面的 ServiceMonitor 对象中的 selector 保持一致,selector下面配置的是component=kube-scheduler,为什么会是这个 label 标签呢,我们可以去 describe 下 kube-scheduelr 这个 Pod:

kubectl describe pod kube-scheduler-master -n kube-system

Priority Class Name:  system-node-critical
Node:                 master/192.168.206.10
Start Time:           Mon, 01 Jul 2024 09:25:28 +0800
Labels:               component=kube-scheduler
                      tier=control-plane
Annotations:          kubernetes.io/config.hash: b7c68738b74c821ccea799a016e1ffa5
                      kubernetes.io/config.mirror: b7c68738b74c821ccea799a016e1ffa5
                      kubernetes.io/config.seen: 2024-07-01T01:48:11.325892523+08:00
                      kubernetes.io/config.source: file


我们可以看到这个 Pod 具有component=kube-scheduler和tier=control-plane这两个标签,而前面这个标签具有更唯一的特性,所以使用前面这个标签较好,这样上面创建的 Service 就可以和我们的 Pod 进行关联了,直接创建即可:

[root@master ~]# kubectl get svc -n kube-system -l app.kubernetes.io/name=kube-scheduler
NAME             TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)     AGE
kube-scheduler   ClusterIP   10.102.85.153   <none>        10259/TCP   13h
kubectl label nodes master app.kubernetes.io/name=kube-scheduler

创建完成后,隔一小会儿后去 prometheus 查看 targets 下面 kube-scheduler 的状态:

我们可以看到现在已经发现了 target,但是抓取数据结果出错了,这个错误是因为我们集群是使用 kubeadm 搭建的,其中 kube-scheduler 默认是绑定在127.0.0.1上面的,而上面我们这个地方是想通过节点的 IP 去访问,所以访问被拒绝了,我们只要把 kube-scheduler 绑定的地址更改成0.0.0.0即可满足要求,由于 kube-scheduler 是以静态 Pod 的形式运行在集群中的,所以我们只需要更改静态 Pod 目录下面对应的 YAML 文件即可:

ls /etc/kubernetes/manifests/
etcd.yaml  kube-apiserver.yaml  kube-controller-manager.yaml  kube-scheduler.yaml

将 kube-scheduler.yaml 文件中-command--address地址更改成0.0.0.0:并且将port=0注释

containers:
- command:
- kube-scheduler
- --leader-elect=true
- --kubeconfig=/etc/kubernetes/scheduler.conf
- --address=0.0.0.0
# - --port=0  # 如果为0,则不提供 HTTP 服务,--secure-port 默认值:10259,通过身份验证和授权为 HTTPS 服务的端口,如果为 0,则不提供 HTTPS。

更改后重启kubelet服务,更改后 kube-scheduler 会自动重启,重启完成后再去查看 Prometheus 上面的采集目标就正常了。

修改完成后我们将该文件从当前文件夹中移除,隔一会儿再移回该目录,就可以自动更新了,然后再去看 prometheus 中 kube-scheduler 这个 target :

如上报错是因为1.21.1版本,需要注意现在版本默认的安全端口是10259

kubectl edit svc kube-scheduler -n kube-system
spec:
  ports:
  - name: https-metrics   
    port: 10259
    protocol: TCP
    targetPort: 10259
  selector:
    component: kube-scheduler 

\

部署 kube-controller-manager 组件的监控

apiVersion: v1
kind: Service
metadata:
  labels:
    app.kubernetes.io/name: kube-controller-manager
  name: kube-controller-manager
  namespace: kube-system
spec:
  ports:
  - name: https-metrics
    port: 10257
    protocol: TCP
    targetPort: 10257
  selector:
    component: kube-scheduler

然后将 kube-controller-manager 静态 Pod 的资源清单文件中的参数 --bind-address=127.0.0.1 更改为 --bind-address=0.0.0.0。 注释 - --port=0

cat /etc/kubernetes/manifests/kube-controller-manager.yaml

更改后重启kubelet服务,更改后 kube-controller-manager会自动重启,重启完成后再去查看 Prometheus 上面的采集目标就正常了

上面的监控数据配置完成后,现在我们可以去查看下 grafana 下面的 dashboard,同样使用上面的 NodePort 访问即可,第一次登录使用 admin:admin 登录即可,进入首页后,可以发现已经和我们的 Prometheus 数据源关联上了,正常来说可以看到一些监控图表了:

三、监控 Etcd

第一步建立一个 ServiceMonitor 对象,用于 Prometheus 添加监控项

第二步为 ServiceMonitor 对象关联 metrics 数据接口的一个 Service 对象

第三步确保 Service 对象可以正确获取到 metrics 数据

创建secrets资源

首先我们将需要使用到的证书通过 secret 对象保存到集群中去:(在 etcd 运行的节点)

获取证书,kubedm部署的

[root@master ~]# kubectl get pods -n kube-system | grep etcd
etcd-master                      1/1     Running   44         516d


[root@master ~]# kubectl describe pod etcd-master -n kube-system
Name:                 etcd-master
Namespace:            kube-system
Priority:             2000001000
Priority Class Name:  system-node-critical
Node:                 master/192.168.206.10
Start Time:           Mon, 01 Jul 2024 09:25:28 +0800
Labels:               component=etcd
                      tier=control-plane
Annotations:          kubeadm.kubernetes.io/etcd.advertise-client-urls: https://192.168.206.10:2379
                      kubernetes.io/config.hash: 4718945d29e49afeeca8a4ab35b6b412
                      kubernetes.io/config.mirror: 4718945d29e49afeeca8a4ab35b6b412
                      kubernetes.io/config.seen: 2023-01-31T22:04:39.591063123+08:00
                      kubernetes.io/config.source: file
Status:               Running
IP:                   192.168.206.10
IPs:
  IP:           192.168.206.10
Controlled By:  Node/master
Containers:
  etcd:
    Container ID:  docker://c7124102ca9389940ca148b835be0327f11506b05885aff1c634a308f309f200
    Image:         registry.aliyuncs.com/google_containers/etcd:3.4.13-0
    Image ID:      docker-pullable://registry.aliyuncs.com/google_containers/etcd@sha256:4ad90a11b55313b182afc186b9876c8e891531b8db4c9bf1541953021618d0e2
    Port:          <none>
    Host Port:     <none>
    Command:
      etcd
      --advertise-client-urls=https://192.168.206.10:2379
      --cert-file=/etc/kubernetes/pki/etcd/server.crt
      --client-cert-auth=true
      --data-dir=/var/lib/etcd
      --initial-advertise-peer-urls=https://192.168.206.10:2380
      --initial-cluster=master=https://192.168.206.10:2380
      --key-file=/etc/kubernetes/pki/etcd/server.key
      --listen-client-urls=https://127.0.0.1:2379,https://192.168.206.10:2379
      --listen-metrics-urls=http://127.0.0.1:2381
      --listen-peer-urls=https://192.168.206.10:2380
      --name=master
      --peer-cert-file=/etc/kubernetes/pki/etcd/peer.crt
      --peer-client-cert-auth=true
      --peer-key-file=/etc/kubernetes/pki/etcd/peer.key
      --peer-trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt
      --snapshot-count=10000
      --trusted-ca-file=/etc/kubernetes/pki/etcd/ca.crt
    State:          Running
      Started:      Mon, 01 Jul 2024 11:59:47 +0800
    Last State:     Terminated
      Reason:       Error
      Exit Code:    255
      Started:      Mon, 01 Jul 2024 09:25:30 +0800
      Finished:     Mon, 01 Jul 2024 11:59:37 +0800
    Ready:          True
    Restart Count:  44

可以看到 ETCD 的证书文件在 Kubernetes Master 节点的 “/etc/kubernetes/pki/etcd/” 文件夹下。

将证书存入 Kubernetes

#创建secret资源

kubectl create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.crt --from-file=/etc/kubernetes/pki/etcd/healthcheck-client.key --from-file=/etc/kubernetes/pki/etcd/ca.crt -n monitoring

查看刚刚创建的资源

[root@master ~]# kubectl get secret etcd-certs -n monitoring
NAME         TYPE     DATA   AGE
etcd-certs   Opaque   3      9s
[root@master ~]#

将证书挂入 Prometheus

编译Prometheus资源,将etcd证书导入

[root@master ~]# kubectl get prometheus -n monitoring
NAME   VERSION   REPLICAS   AGE
k8s    2.29.1    2          3h20m
[root@master ~]# kubectl edit prometheus k8s -n monitoring
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
  creationTimestamp: "2024-07-01T02:44:34Z"
  generation: 2
  labels:
    app.kubernetes.io/component: prometheus
    app.kubernetes.io/name: prometheus
    app.kubernetes.io/part-of: kube-prometheus
    app.kubernetes.io/version: 2.29.1
    prometheus: k8s
  name: k8s
  namespace: monitoring
  resourceVersion: "905177"
  uid: 3ad2b674-458c-4918-907a-337e838ffd53
spec:
  alerting:
    alertmanagers:
    - apiVersion: v2
      name: alertmanager-main
      namespace: monitoring
      port: web
  enableFeatures: []
  externalLabels: {}
  image: quay.io/prometheus/prometheus:v2.29.1
  nodeSelector:
    kubernetes.io/os: linux
  podMetadata:
    labels:
      app.kubernetes.io/component: prometheus
      app.kubernetes.io/name: prometheus
      app.kubernetes.io/part-of: kube-prometheus
      app.kubernetes.io/version: 2.29.1
  podMonitorNamespaceSelector: {}
  podMonitorSelector: {}
  probeNamespaceSelector: {}
  probeSelector: {}
  replicas: 2
  resources:
    requests:
      memory: 400Mi
  ruleNamespaceSelector: {}
  ruleSelector: {}
  secrets:          #------新增证书配置,将etcd证书挂入
  - etcd-certs
  securityContext:
    fsGroup: 2000
    runAsNonRoot: true
    runAsUser: 1000
  serviceAccountName: prometheus-k8s
  serviceMonitorNamespaceSelector: {}
  serviceMonitorSelector: {}
  version: 2.29.1
[root@master ~]#

等到pod重启后,进入pod查看是否可以看到证书

[root@master ~]# kubectl get pod -owide -n monitoring
NAME                                   READY   STATUS    RESTARTS   AGE     IP               NODE      NOMINATED NODE   READINESS GATES
alertmanager-main-0                    2/2     Running   0          3h26m   172.7.2.119      slave02   <none>           <none>
alertmanager-main-1                    2/2     Running   0          3h26m   172.7.2.118      slave02   <none>           <none>
alertmanager-main-2                    2/2     Running   0          3h26m   172.7.1.108      slave01   <none>           <none>
blackbox-exporter-6798fb5bb4-pf7tw     3/3     Running   0          3h26m   172.7.2.122      slave02   <none>           <none>
grafana-7476b4c65b-bv62x               1/1     Running   0          3h26m   172.7.2.120      slave02   <none>           <none>
kube-state-metrics-74964b6cd4-9tldk    3/3     Running   0          3h26m   172.7.1.109      slave01   <none>           <none>
node-exporter-5lw2w                    2/2     Running   0          3h26m   192.168.206.12   slave02   <none>           <none>
node-exporter-g546z                    2/2     Running   2          3h26m   192.168.206.10   master    <none>           <none>
node-exporter-gwhdr                    2/2     Running   0          3h26m   192.168.206.11   slave01   <none>           <none>
prometheus-adapter-8587b9cf9b-qzgmt    1/1     Running   0          3h26m   172.7.2.121      slave02   <none>           <none>
prometheus-adapter-8587b9cf9b-rmmlk    1/1     Running   0          3h26m   172.7.1.110      slave01   <none>           <none>
prometheus-k8s-0                       2/2     Running   0          86s     172.7.2.124      slave02   <none>           <none>
prometheus-k8s-1                       2/2     Running   0          91s     172.7.1.112      slave01   <none>           <none>
prometheus-operator-75d9b475d9-zshf7   2/2     Running   0          3h28m   172.7.1.106      slave01   <none>           <none>
[root@master ~]# kubectl exec -it -n monitoring prometheus-k8s-0 -- /bin/sh
/prometheus $ ls -l /etc/prometheus/secrets/etcd-certs/
total 0
lrwxrwxrwx    1 root     2000            13 Jul  1 06:09 ca.crt -> ..data/ca.crt
lrwxrwxrwx    1 root     2000            29 Jul  1 06:09 healthcheck-client.crt -> ..data/healthcheck-client.crt
lrwxrwxrwx    1 root     2000            29 Jul  1 06:09 healthcheck-client.key -> ..data/healthcheck-client.key
/prometheus $

创建 Etcd Service & Endpoints

因为 ETCD 是独立于集群之外的,所以我们需要创建一个 Endpoints 将其代理到 Kubernetes 集群,然后创建一个 Service 绑定 Endpoints,然后 Kubernetes 集群的应用就可以访问 ETCD 了。

[root@master ~]# vi etcd-service.yaml

apiVersion: v1
kind: Service
metadata:
  name: etcd-k8s
  namespace: kube-system
  labels:
    k8s-app: etcd
spec:
  type: ClusterIP
  clusterIP: None       #设置为None,不分配Service IP
  ports:
  - name: port
    port: 2379          
    protocol: TCP
---
apiVersion: v1
kind: Endpoints
metadata:
  name: etcd-k8s
  namespace: kube-system
  labels:
    k8s-app: etcd
subsets:
- addresses:
  - ip: 192.168.206.10   #Etcd 所在节点的IP
  ports:
  - port: 2379          #Etcd 端口号



如果是集群就是
apiVersion: v1
kind: Endpoints
metadata:
  name: etcd-k8s
  namespace: kube-system
  labels:
    k8s-app: etcd
subsets:
- addresses:
  - ip: 11.0.64.5
  - ip: 11.0.64.6
  - ip: 11.0.64.7    
  ports:
  - name: port
    port: 2379
    protocol: TCP
 

[root@master ~]# kubectl apply -f etcd-service.yaml
service/etcd-k8s created
endpoints/etcd-k8s created
[root@master ~]#

创建 ServiceMonitor

创建 Prometheus 监控资源,配置用于监控 Etcd 参数。

vi etcd-monitor.yaml

$ vim prometheus-serviceMonitorEtcd.yaml
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: etcd-k8s
  namespace: monitoring
  labels:
    k8s-app: etcd-k8s
spec:
  jobLabel: k8s-app
  endpoints:
  - port: port
    interval: 30s
    scheme: https
    tlsConfig:
      caFile: /etc/prometheus/secrets/etcd-certs/ca.crt
      certFile: /etc/prometheus/secrets/etcd-certs/healthcheck-client.crt
      keyFile: /etc/prometheus/secrets/etcd-certs/healthcheck-client.key
      insecureSkipVerify: true
  selector:
    matchLabels:
      k8s-app: etcd
  namespaceSelector:
    matchNames:
    - kube-system
 
$ kubectl apply -f etcd-monitor.yaml

上面我们在 monitoring 命名空间下面创建了名为 etcd-k8s 的 ServiceMonitor 对象,基本属性和前面章节中的一致,匹配 kube-system 这个命名空间下面的具有 k8s-app=etcd 这个 label 标签的 Service,jobLabel 表示用于检索 job 任务名称的标签,和前面不太一样的地方是 endpoints 属性的写法,配置上访问 etcd 的相关证书,endpoints 属性下面可以配置很多抓取的参数,比如 relabel、proxyUrl,tlsConfig 表示用于配置抓取监控数据端点的 tls 认证,由于证书 serverName 和 etcd 中签发的可能不匹配,所以加上了 insecureSkipVerify=true

Prometheus 的 Dashboard

中查看 targets,便会有 etcd 的监控项

修改prometheus的时间

~]# docker tag quay.io/prometheus/prometheus:v2.29.1 quay.io/prometheus/prometheus-bak:v2.29.1

~]# vi Dockerfile
FROM quay.io/prometheus/prometheus-bak:v2.29.1
USER root
RUN /bin/cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo 'Asia/Shanghai' >/etc/timezone

~]# docker build -t quay.io/prometheus/prometheus:v2.29.1 .

Grafana 引入 ETCD 仪表盘

数据采集到后,可以在 grafana 中导入编号为3070的 dashboard,获取到 etcd 的监控图表。

Grafana 持久化数据的能力

通过查看发现竟然将Grafana数据挂载emptyDir:可实现Pod中的容器之间共享目录数据,但没有持久化数据的能力,存储卷会随着Pod生命周期结束而一起删除

kubectl get delpoyment grafana -n monitoring

此处通过动态pvc进行挂载

vim grafana-p.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: grafana-nfs-pvc
  namespace: monitoring
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: nfs-client-storageclass
  resources:
    requests:
      storage: 1Gi

kubectl apply -f grafana-p.yaml

kubectl edit delpoyment grafana -n monitoring

- emptyDir:{}
  name: grafana-storage
  
- name: grafana-storage
  persistentVolumeClaim:
    claimName: grafana-nfs-pvc

异常处理

都不部署完成后,发现了grafana的监控模板中,只有这一块数据

查看其他监控项目数据,是没有的

但是发现etcd的metrice是有数据的

解决方案:问题是因为svc跟endpoint没绑定上

[root@master mnt]# kubectl describe svc etcd-k8s -n kube-system
Name:              etcd-k8s
Namespace:         kube-system
Labels:            k8s-app=etcd
Annotations:       <none>
Selector:          <none>
Type:              ClusterIP
IP Family Policy:  RequireDualStack
IP Families:       IPv4,IPv6
IP:                None
IPs:               None
Port:              port  2379/TCP
TargetPort:        2379/TCP
Endpoints:         
Session Affinity:  None
Events:            <none>

是因为高版本需要Endpoints 写kubelet名称 (kubectl get node)显示的名称

[root@master mnt]# cat etcd-service.yaml
apiVersion: v1
kind: Service
metadata:
  name: etcd-k8s
  namespace: kube-system
  labels:
    k8s-app: etcd
spec:
  type: ClusterIP
  clusterIP: None
  ports:
  - name: port
    port: 2379
    protocol: TCP
---
apiVersion: v1
kind: Endpoints
metadata:
  name: etcd-k8s
  namespace: kube-system
  labels:
    k8s-app: etcd
subsets:
- addresses:
  - ip: 192.168.206.10    #etcd节点名称
    nodeName: master      #kubelet名称 (kubectl get node)显示的名称
  ports:
  - name: port
    port: 2379
    protocol: TCP

kubectl apply -f etcd-service.yaml

如果是集群
- addresses:
  - ip: 192.168.0.10     #etcd节点名称
    nodeName: k8s-01     #kubelet名称 (kubectl get node)显示的名称
  - ip: 192.168.0.11
    nodeName: k8s-02
  - ip: 192.168.0.12
    nodeName: k8s-03

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1891506.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

学习和发展人工智能:新兴趋势和成功秘诀

人工智能(AI)继续吸引组织&#xff0c;因为它似乎无穷无尽地提高生产力和业务成果。在本博客中&#xff0c;了解学习和发展(L&D)部门如何利用人工智能改进流程&#xff0c;简化工作流程&#xff1f; 学习与发展(L&D)部门领导开始探索如何提高和支持人工智能能力的劳动…

超快的 Python 包管理工具「GitHub 热点速览」

天下武功&#xff0c;无坚不破&#xff0c;唯快不破&#xff01; 要想赢得程序员的欢心&#xff0c;工具的速度至关重要。仅需这一优势&#xff0c;即可使其在众多竞争对手中脱颖而出&#xff0c;迅速赢得开发者的偏爱。以这款号称下一代极速 Python 包管理工具——uv 为例&…

PyMuPDF 操作手册 - 08 API - Document属性方法和简短说明

文章目录 https://pymupdf.readthedocs.io/en/latest/document.html#Document 方法/属性简短描述Document.add_layer()仅限 PDF:进行新的可选内容配置Document.add_ocg()仅限 PDF:添加新的可选内容组Document.authenticate()访问加密文档Document.bake()仅限 PDF:将…

Bootstrap 图片

Bootstrap 图片 Bootstrap 是一个流行的前端框架,它提供了一套丰富的工具和组件,用于快速开发响应式和移动优先的网页。在本文中,我们将探讨如何使用 Bootstrap 来处理和展示图片,包括图片的响应式设计、图片样式和图片布局。 响应式图片 Bootstrap 通过其栅格系统提供了…

前端利用vue如何实现导入和导出功能.md

1. 前端利用vue如何实现导入和到处功能 1.1. 导入功能&#xff08;以导入Excel文件为例&#xff09; 1.1.1. 实现步骤: 1.1.1.1. 安装依赖: 首先&#xff0c;你需要安装处理Excel文件的库&#xff0c;如xlsx。1.1.1.2. 创建上传组件: 使用Element UI的<el-upload>组件或其…

基于Vue框架实现的记事本

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>懒人记事本</title><style>body {fo…

PyCharm 如何设置作者信息

1、点击pycharm右上角的齿轮&#xff0c;选择settings 2、选择editor 3、选择 Editor File and Code Templates 4、选择作者信息的文件类型&#xff0c;中间选择框选择Python Script 5、然后在右边的输入框中输入相关的信息 # -*- coding: utf-8 -*- """ Time …

JAVA+SSM+VUE《教学视频点播系统》

1管理员登录 管理员登录&#xff0c;通过填写用户名、密码、角色等信息&#xff0c;输入完成后选择登录即可进入视频点播系统&#xff0c;如图1所示。 图1管理员登录界面图 2管理员功能实现 2.1 修改密码 管理员对修改密码进行填写原密码、新密码、确认密码并进行删除、修改…

密码学复习

目录 基础 欧拉函数 欧拉函数φ(n)定义 计算方法的技巧 当a=a_1*a_2*……*a_n时 欧拉定理 剩余系 一些超简单密码 维吉尼亚 密钥fox 凯撒(直接偏移) 凯特巴氏(颠倒字母表) 摩斯密码(字母对应电荷线) 希尔(hill)密码 一些攻击 RSA 求uf+vg=1 快速幂模m^…

【shell script】

文章目录 一、基础shell script二、脚本运行方式的差异三、判断式1.利用test命令2.利用判断符号[] 四、if&#xff0c;case语句1.if...then2.case...esac 五、函数function六、循环1.while和until循环2.for循环 一、基础shell script 在“shell”部分&#xff0c;那是在命令行…

Socket编程用到的函数TCP UDP实例

最基本的 Socket 模型 参考这次答应我&#xff0c;一举拿下 I/O 多路复用&#xff01; (qq.com) Socket编程详解-CSDN博客 Socket是一种通信机制&#xff0c;通过它可以在不同主机之间进行数据交换。在Socket编程中&#xff0c;有两种常见的通信模式&#xff1a;客户端-服务…

采煤机作业3D虚拟仿真教学线上展示增强应急培训效果

在化工行业的生产现场&#xff0c;安全永远是首要之务。为了加强从业人员的应急响应能力和危机管理能力&#xff0c;纷纷引入化工行业工艺VR模拟培训&#xff0c;让应急演练更加生动、高效。 化工行业工艺VR模拟培训软件基于真实的厂区环境&#xff0c;精确还原了各类事件场景和…

读人工智能全传02图灵测试

1. 图灵测试 1.1. 模仿游戏 1.2. 20世纪40年代末至50年代初&#xff0c;第一台计算机的出现引发了一场公开辩论&#xff0c;辩论主题就是这一现代科学奇迹的潜力如何 1.2.1. 这场辩论中最瞩目的贡献当归属于一本名叫《控制论》的书&#xff0c;由麻省理工学院数学教授诺伯特…

Java | Leetcode Java题解之第214题最短回文串

题目&#xff1a; 题解&#xff1a; class Solution {public String shortestPalindrome(String s) {int n s.length();int[] fail new int[n];Arrays.fill(fail, -1);for (int i 1; i < n; i) {int j fail[i - 1];while (j ! -1 && s.charAt(j 1) ! s.charAt…

PostgreSQL的pg_filedump工具

PostgreSQL的pg_filedump工具 基础信息 OS版本&#xff1a;Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本&#xff1a;16.2 pg软件目录&#xff1a;/home/pg16/soft pg数据目录&#xff1a;/home/pg16/data 端口&#xff1a;5777pg_filedump 是一个工具&#x…

【docker】运行阶段遇到的问题

目录 1、查询docker 下挂载了哪些工具 2、docker中的简单命令 3、实际场景应用&#xff08;redis&#xff09; 目前工作中仅用到了redis,所以没有太多经验可以交流&#xff0c;暂时仅将我目前遇到的进行发布。还请见谅。 1、查询docker 下挂载了哪些工具 docker ps -a 或者…

10.SQL注入-http header利用案例

SQL注入-http header利用案例 首先通过登录http头界面,如图所示:登录的信息会被记录到数据库中去&#xff0c;同时使用bp进行抓包分析 将抓包的数据发送repeater里面进行调试 通过useragent进行注入 将useragent对应的数据信息删除掉,输入单引号测试被后台执行报错sql语法…

《安富莱嵌入式周报》第339期:单片机运行苹果早期Mac系统模拟器,2GHz示波器有源探头,下一代矩阵开关面包板,卡片式声音分贝器,HP经典示波器,ReRAM

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 视频版 https://www.bilibili.com/video/BV1Kf421Q7Lh 《安富莱嵌入式周报》第339期&#xff1a;单片机运行苹果早期Ma…

Newport太阳光模拟器MSOL-UV-X使用说明手侧

Newport太阳光模拟器MSOL-UV-X使用说明手侧

如何在《中国科学报》报刊上发表论文?

如何在《中国科学报》报刊上发表论文&#xff1f; 《中国科学报》征稿 中国科学院、中国工程院、国家自然科学基金委员会、中国科学技术协会共同主办报纸 【级别】&#xff1a;国家级 【版面】&#xff1a;不指定版面&#xff0c;理论稿件&#xff0c;无广告字眼 【方向】&…