首先,能够开发 AGI 时代新应用程序
第一步:学会大模型内核架构,对 Transformer 神经网络架构有个大致的了解,能够搞懂 :LLM 大模型是如何预测下一个 token 的、涌现是如何产生的、幻觉问题如何避免、在线推理的性能问题如何解决、LLM 大模型的选型。
第二步:学会大模型开发 API,对 LLM 大模型的能力有个详细了解,能够搞懂:LLM 都提供了哪些功能、有哪些 API 接口以及对应的用法。就可以开发基于大模型的应用程序了。
第三步:学会开发框架,对主流的开发框架(比如:LangChain)有个大致的了解,能够掌握:开发框架本身的技术原理、开发框架选型、开发框架提供的功能、基于开发框架快速开发大模型应用程序。
第四步:学会向量数据库,向量数据库负责应用程序的数据存储,能够掌握:向量数据库的基础架构、向量数据库选型、向量数据库的索引建立、向量数据库的查询接口、向量数据库的性能优化等。
第五步:学会 AI 编程,快速提升编码学习,能够掌握:AI 编程框架的技术架构原型、AI 编程产品的选型、AI 编程功能的灵活应用。
学会以上5步,就能够开发出一个 AGI 时代的新应用程序了,如果开发的这个应用程序要性能好、要健壮、要功能丰富等,就要继续学习以下的 LLM 大模型的技术知识。
【一一AGI大模型学习 所有资源获取处一一】
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
2
其次,搞开发企业级 AI Agent 应用
第六步:搞定 AI Agent,AI Agent 是 AGI 时代新的应用程序形态,类比移动互联网时代的 APP 形态,能够掌握:AI Agent 的5个技术组件(LLM、Planning、Memory、Tools Use、Action)、AI Agent 的开发框架(LangChain)、AI Agent Function Calling 函数调用。
第七步:搞定大模型缓存,LLM 大模型的推理成本比较高,推理速度也高达秒级,缓存是降低大模型推理成本和提升推理速度的一剂良药。能够掌握:缓存的两种匹配方法、缓存的计算原理、基于 GPTCache 的缓存方法、提升缓存命中率的方法。
第八步:搞定算力,算力是大模型以及上层应用的资源,能够掌握:业界主流的算力产品、算力如何计算评估、算力如何选型等。
通过以上三步的学习,就能够构建出一个企业级的 AI Agent 应用了,可以是增量的新 AI Agent 应用(比如:业务助手类),也是和已有业务结合的存量 AI Agent 应用(比如:智能客服、搜索、推荐、广告、风控、数据分析、BI等),并能能够对 AI Agent 的运行资源做出合适的评估量化。
3
再次,驾驭企业级私有大模型构建
第九步:驾驭 RAG(Retrieval Augmented Generation),RAG 是 LLM 大模型能力增强的一种方式,能够掌握:知识库的向量化构建技术、基于向量数据库的检索技术、基于 Prompt 的大模型增强技术。
第十步:驾驭大模型微调(Fine-tuning),微调也是 LLM 大模型能力增强的另外一种方式,能够掌握:微调的常用算法、微调的算法选型、微调的高效 PEFT 框架、微调的数据工程技术、微调的训练策略。
以上两步涉及的技术实际上是企业级私有大模型的构建技术,学会以上两步的学习,就能够构建企业级私有专用大模型了。
4
最后,深入应用 LLM 大模型技术成为开发大师
第十一步:深入大模型预训练,大模型预训练本身由于涉及雄厚的资金壁垒,注定是“大厂”的游戏,但是大模型预训练本身的技术很值得我们学习,能够掌握:预训练数据获取技术、预训练数据工程技术、预训练策略设计、预训练分布式并行技术等。
第十二步:深入 LLMOps,LLMOps 是在 MLOps 基础之上,覆盖了大模型以及应用的开发、调试、测试、部署、调优、运维治理等一套完整的流程,能够掌握:数据工具、模型工具、部署工具、迭代工具等。
通过以上12个步骤的学习,就能够深度应用 LLM 大模型技术,高效开发 AGI时代企业级新的应用程序,做一名高薪的 AI 大模型开发大师。
我们梳理了下 AI 大模型的知识图谱,包括12项核心技能:大模型内核架构、大模型开发 API、开发框架、向量数据库、AI 编程、AI Agent、缓存、算力、RAG、大模型微调、大模型预训练、LLMOps 等。
大模型岗位需求
大模型时代,企业对人才的需求变了,AIGC相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把全套AI技术和大模型入门资料、操作变现玩法都打包整理好,希望能够真正帮助到大家。
-END-
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓