Paddle入门实战系列(四):中文场景文字识别

news2024/11/15 1:24:26

写在前面:强烈推荐给大家一个优秀的人工智能学习网站,内容包括人工智能基础、机器学习、深度学习神经网络等,详细介绍各部分概念及实战教程,通俗易懂,非常适合人工智能领域初学者及研究者学习。➡️点击跳转到网站。


中文场景文字识别

项目来源:飞桨学习赛:中文场景文字识别 - 飞桨AI Studio

项目背景

随着OCR领域在结构化数据中取得不错成果及应用,中文场景文字识别技术在人们的日常生活中受到广泛关注,在文档识别、身份证识别、银行卡识别、病例识别、名片识别等领域广泛应用.但由于中文场景中的文字容易受光照变化、低分辨率、字体以及排布多样性、中文字符种类多等影响,对识别经典有一定影响,如何解决这一问题是目前值得关注的。

项目简介:

本项目为基于PaddleOCR的中文场景文字识别,项目主要以CRNN网络为基础框架,结合数据增强及模型微调,采用ResNet34和MobileNetV3模型作为骨干网络,进行训练及预测。以准确度为评价指标,最终生成的预测文件为work中的result.txt文件。

数据集介绍:

本比赛提供的数据训练集(train_img)是5w张,测试集(test_img)为1w张。训练集原始标注文件(train.list)。所有图像经过预处理,将文字区域进行处理,统一为高48像素的图片。

相关技术

PaddleOCR参考: https://github.com/PaddlePaddle/PaddleOCR

项目以PaddleOCR为框架,采用CRNN+CTC网络为主体,具体结果如下图:

注:本项目最后识别存在一定问题,最近比较忙,后续会处理,流程是对的!

项目流程:

1.PaddleOCR安装

2.数据处理

3.模型调整

4.训练与预测

一、环境安装

1.1安装PaddleOCR

In [ ]

#克隆PaddleOCR项目
!cd ~/work && git clone -b develop https://gitee.com/paddlepaddle/PaddleOCR.git

In [ ]

#安装提供环境文件requirements.txt
!cd ~/work/PaddleOCR 
!pip install -r requirements.txt && python setup.py install

二、数据处理

2.1解压数据集

In [ ]

#解压训练集与测试集
!cd ~/data/data62842/ && unzip train_images.zip
!cd ~/data/data62843/ && unzip test_images.zip

In [ ]

#移动数据集
!cd ~/data/data62842/ && mv train_images ../ && mv train_label.csv ../
!cd ~/data/data62843/ && mv test_images ../ 

In [5]

#查看标签文件
%cd data/data62842
!cat mv train_label.csv | head  -n 10

2.2数据增广

  • 首先,考虑使用轻量模型会有一定精度损失,采用经典网络ResNet34。
  • 其次,为了进一步增强识别效果及模型泛化行,参考其他项目使用text_render进行数据增广。
  • 最后,使用text_renderer进行数据增广,修改text_render/configs/default.yaml配置,以下为更改后的模版,主要将三项做修改,分别是font_color的enable设为True,img_bg的enable设为False,seamless_clone的enable设为True。

数据增广参考本项目:https://aistudio.baidu.com/aistudio/projectdetail/1306342?channelType=0&channel=0

# Small font_size will make text looks like blured/prydown
font_size:
  min: 14
  max: 23

# choose Text color range
# color boundary is in R,G,B format
font_color:
  enable: True
  blue:
    fraction: 0.5
    l_boundary: [0,0,150]
    h_boundary: [60,60,255]
  brown:
    fraction: 0.5
    l_boundary: [139,70,19]
    h_boundary: [160,82,43]

# By default, text is drawed by Pillow with (https://stackoverflow.com/questions/43828955/measuring-width-of-text-python-pil)
# If `random_space` is enabled, some text will be drawed char by char with a random space
random_space:
  enable: false
  fraction: 0.3
  min: -0.1 # -0.1 will make chars very close or even overlapped
  max: 0.1

# Do remap with sin()
# Currently this process is very slow!
curve:
  enable: false
  fraction: 0.3
  period: 360  # degree, sin 函数的周期
  min: 1 # sin 函数的幅值范围
  max: 5

# random crop text height
crop:
  enable: false
  fraction: 0.5

  # top and bottom will applied equally
  top:
    min: 5
    max: 10 # in pixel, this value should small than img_height
  bottom:
    min: 5
    max: 10 # in pixel, this value should small than img_height

# Use image in bg_dir as background for text
img_bg:
  enable: false
  fraction: 0.5

# Not work when random_space applied
text_border:
  enable: false
  fraction: 0.5

  # lighter than word color
  light:
    enable: true
    fraction: 0.5

  # darker than word color
  dark:
    enable: true
    fraction: 0.5

# https://docs.opencv.org/3.4/df/da0/group__photo__clone.html#ga2bf426e4c93a6b1f21705513dfeca49d
# https://www.cs.virginia.edu/~connelly/class/2014/comp_photo/proj2/poisson.pdf
# Use opencv seamlessClone() to draw text on background
# For some background image, this will make text image looks more real
seamless_clone:
  enable: true
  fraction: 0.5

perspective_transform:
  max_x: 25
  max_y: 25
  max_z: 3

blur:
  enable: true
  fraction: 0.03

# If an image is applied blur, it will not be applied prydown
prydown:
  enable: true
  fraction: 0.03
  max_scale: 1.5 # Image will first resize to 1.5x, and than resize to 1x

noise:
  enable: true
  fraction: 0.3

  gauss:
    enable: true
    fraction: 0.25

  uniform:
    enable: true
    fraction: 0.25

  salt_pepper:
    enable: true
    fraction: 0.25

  poisson:
    enable: true
    fraction: 0.25

line:
  enable: false
  fraction: 0.05

  random_over:
    enable: true
    fraction: 0.2

  under_line:
    enable: false
    fraction: 0.2

  table_line:
    enable: false
    fraction: 0.3

  middle_line:
    enable: false
    fraction: 0.3

line_color:
  enable: false
  black:
    fraction: 0.5
    l_boundary: [0,0,0]
    h_boundary: [64,64,64]
  blue:
    fraction: 0.5
    l_boundary: [0,0,150]
    h_boundary: [60,60,255]

# These operates are applied on the final output image,
# so actually it can also be applied in training process as an data augmentation method.

# By default, text is darker than background.
# If `reverse_color` is enabled, some images will have dark background and light text
reverse_color:
  enable: false
  fraction: 0.5

emboss:
  enable: false
  fraction: 0.1

sharp:
  enable: false
  fraction: 0.1


In [ ]

!cd ~/work && git clone https://github.com/Sanster/text_renderer
!cd ~/work/text_renderer && pip install -r requirements.txt
  • CRNN网络主要考虑图片高度。以4为倍数,通过统计训练集的图像尺寸,训练时图片高度设为48。

In [ ]

import glob
import os
import cv2


def get_aspect_ratio(img_set_dir):
    m_width = 0
    m_height = 0
    width_dict = {}
    height_dict = {}
    images = glob.glob(img_set_dir+'*.jpg')
    for image in images:
        img = cv2.imread(image)
        width_dict[int(img.shape[1])] = 1 if (int(img.shape[1])) not in width_dict else 1 + width_dict[int(img.shape[1])]
        height_dict[int(img.shape[0])] = 1 if (int(img.shape[0])) not in height_dict else 1 + height_dict[int(img.shape[0])]
        m_width += img.shape[1]
        m_height += img.shape[0]
    m_width = m_width/len(images)
    m_height = m_height/len(images)
    aspect_ratio = m_width/m_height
    width_dict = dict(sorted(width_dict.items(), key=lambda item: item[1], reverse=True))
    height_dict = dict(sorted(height_dict.items(), key=lambda item: item[1], reverse=True))
    return aspect_ratio,m_width,m_height,width_dict,height_dict
aspect_ratio,m_width,m_height,width_dict,height_dict = get_aspect_ratio("/home/aistudio/data/train_images/")
print("aspect ratio is: {}, mean width is: {}, mean height is: {}".format(aspect_ratio,m_width,m_height))
print("Width dict:{}".format(width_dict))
print("Height dict:{}".format(height_dict))
import pandas as pd

def Q2B(s):
    """全角转半角"""
    inside_code=ord(s)
    if inside_code==0x3000:
        inside_code=0x0020
    else:
        inside_code-=0xfee0
    if inside_code<0x0020 or inside_code>0x7e: #转完之后不是半角字符返回原来的字符
        return s
    return chr(inside_code)

def stringQ2B(s):
    """把字符串全角转半角"""
    return "".join([Q2B(c) for c in s])

def is_chinese(s):
    """判断unicode是否是汉字"""
    for c in s:
        if c < u'\u4e00' or c > u'\u9fa5':
            return False
    return True

def is_number(s):
    """判断unicode是否是数字"""
    for c in s:
        if c < u'\u0030' or c > u'\u0039':
            return False
    return True

def is_alphabet(s):
    """判断unicode是否是英文字母"""
    for c in s:
        if c < u'\u0061' or c > u'\u007a':
            return False
    return True

def del_other(s):
    """判断是否非汉字,数字和小写英文"""
    res = str()
    for c in s:
        if not (is_chinese(c) or is_number(c) or is_alphabet(c)):
            c = ""
        res += c
    return res


df = pd.read_csv("/home/aistudio/data/train_label.csv", encoding="gbk")
name, value = list(df.name), list(df.value)
for i, label in enumerate(value):
    # 全角转半角
    label = stringQ2B(label)
    # 大写转小写
    label = "".join([c.lower() for c in label])
    # 删除所有空格符号
    label = del_other(label)
    value[i] = label

# 删除标签为""的行
data = zip(name, value)
data = list(filter(lambda c: c[1]!="", list(data)))
# 保存到work目录
with open("/home/aistudio/data/train_label.txt", "w") as f:
    for line in data:
        f.write(line[0] + "\t" + line[1] + "\n")

# 记录训练集中最长标签
label_max_len = 0
with open("/home/aistudio/data/train_label.txt", "r") as f:
    for line in f:
        name, label = line.strip().split("\t")
        if len(label) > label_max_len:
            label_max_len = len(label)

print("label max len: ", label_max_len)
def create_label_list(train_list):
    classSet = set()
    with open(train_list) as f:
        next(f)
        for line in f:
            img_name, label = line.strip().split("\t")
            for e in label:
                classSet.add(e)
    # 在类的基础上加一个blank
    classList = sorted(list(classSet))
    with open("/home/aistudio/data/label_list.txt", "w") as f:
        for idx, c in enumerate(classList):
            f.write("{}\t{}\n".format(c, idx))
    
    # 为数据增广提供词库
    with open("/home/aistudio/work/text_renderer/data/chars/ch.txt", "w") as f:
        for idx, c in enumerate(classList):
            f.write("{}\n".format(c))
            
    return classSet

classSet = create_label_list("/home/aistudio/data/train_label.txt")
print("classify num: ", len(classSet))
aspect ratio is: 3.451128333333333, mean width is: 165.65416, mean height is: 48.0
Width dict:{48: 741, 96: 539, 44: 392, 42: 381, 144: 365, 45: 345, 43: 323, 72: 318, 88: 318, 40: 312, 52: 301, 36: 298, 50: 297, 120: 294, 54: 288, 84: 286, 51: 283, 32: 283, 24: 281, 100: 277, 64: 276, 80: 276, 76: 275, 102: 272, 81: 270, 90: 269, 56: 268, 66: 267, 78: 266, 37: 262, 82: 261, 41: 259, 89: 258, 92: 257, 46: 256, 60: 251, 86: 249, 168: 246, 53: 246, 105: 243, 61: 242, 57: 241, 128: 241, 112: 240, 85: 239, 39: 237, 91: 237, 68: 235, 98: 234, 192: 233, 93: 233, 75: 232, 74: 229, 34: 229, 33: 229, 70: 228, 25: 226, 87: 226, 104: 224, 110: 224, 58: 223, 132: 221, 62: 221, 49: 221, 101: 221, 108: 221, 126: 218, 150: 218, 94: 217, 73: 217, 129: 216, 28: 216, 30: 215, 69: 215, 99: 212, 160: 211, 38: 210, 136: 209, 109: 207, 26: 207, 55: 206, 35: 205, 118: 205, 116: 204, 115: 203, 174: 201, 117: 200, 148: 200, 106: 200, 122: 199, 113: 198, 67: 197, 77: 197, 172: 195, 114: 195, 156: 194, 130: 191, 140: 190, 138: 190, 83: 187, 103: 186, 124: 186, 147: 185, 59: 183, 139: 182, 146: 180, 123: 180, 176: 179, 27: 179, 97: 177, 65: 176, 161: 174, 162: 173, 137: 173, 154: 172, 158: 171, 133: 171, 31: 169, 240: 169, 125: 168, 29: 168, 169: 166, 186: 166, 141: 166, 121: 165, 165: 164, 152: 161, 134: 161, 157: 160, 153: 160, 135: 159, 166: 156, 149: 155, 177: 154, 189: 154, 63: 151, 163: 151, 142: 150, 181: 149, 107: 146, 183: 145, 111: 145, 173: 144, 170: 144, 79: 144, 178: 143, 184: 143, 216: 141, 164: 141, 171: 137, 204: 137, 159: 136, 185: 135, 127: 134, 196: 134, 187: 132, 200: 131, 210: 130, 194: 130, 151: 127, 208: 126, 155: 126, 145: 125, 180: 125, 131: 123, 71: 123, 198: 121, 182: 120, 217: 119, 220: 119, 188: 118, 201: 116, 195: 115, 202: 114, 228: 111, 179: 111, 175: 111, 206: 110, 256: 109, 232: 109, 222: 109, 205: 108, 252: 106, 197: 105, 211: 104, 219: 103, 214: 102, 119: 100, 234: 100, 288: 99, 47: 99, 218: 99, 213: 99, 203: 98, 225: 97, 264: 97, 209: 96, 242: 96, 190: 96, 199: 96, 236: 94, 226: 94, 224: 93, 193: 91, 229: 91, 246: 89, 212: 87, 243: 86, 249: 86, 207: 84, 262: 84, 231: 82, 268: 82, 245: 81, 237: 81, 235: 80, 230: 78, 221: 78, 233: 78, 260: 75, 250: 74, 261: 74, 244: 74, 248: 74, 167: 74, 273: 73, 227: 72, 274: 72, 247: 70, 336: 70, 270: 67, 276: 67, 241: 66, 253: 65, 223: 64, 300: 64, 272: 64, 277: 64, 265: 64, 267: 63, 279: 61, 282: 60, 254: 60, 271: 60, 259: 60, 258: 59, 278: 59, 292: 59, 280: 59, 238: 58, 255: 58, 312: 58, 95: 57, 215: 57, 284: 57, 251: 56, 283: 56, 304: 54, 296: 54, 306: 54, 266: 53, 290: 53, 285: 52, 360: 52, 269: 52, 143: 51, 384: 51, 297: 50, 324: 49, 291: 49, 330: 49, 320: 49, 313: 49, 309: 49, 302: 48, 257: 47, 340: 46, 328: 45, 318: 45, 314: 45, 368: 45, 333: 45, 325: 45, 308: 44, 281: 43, 332: 43, 275: 43, 369: 42, 310: 42, 295: 41, 341: 41, 191: 41, 303: 41, 322: 40, 342: 40, 298: 40, 294: 40, 293: 40, 289: 39, 400: 39, 378: 39, 286: 38, 346: 38, 321: 38, 432: 37, 307: 37, 338: 37, 316: 37, 299: 37, 331: 36, 327: 36, 323: 36, 329: 35, 344: 35, 305: 34, 348: 34, 339: 34, 317: 32, 311: 31, 375: 31, 349: 31, 396: 31, 263: 31, 361: 31, 373: 30, 372: 30, 381: 30, 347: 30, 301: 30, 434: 29, 345: 29, 326: 29, 403: 29, 362: 29, 334: 29, 402: 28, 337: 28, 480: 28, 387: 28, 351: 28, 366: 28, 376: 27, 315: 27, 352: 27, 404: 27, 239: 27, 377: 26, 354: 26, 389: 26, 358: 26, 405: 26, 394: 25, 319: 25, 363: 25, 386: 25, 364: 25, 391: 24, 388: 24, 408: 24, 464: 24, 353: 24, 382: 24, 365: 24, 371: 23, 379: 23, 429: 23, 416: 23, 374: 23, 393: 23, 390: 23, 355: 23, 392: 22, 444: 22, 457: 22, 468: 22, 423: 22, 401: 22, 406: 21, 395: 21, 528: 21, 357: 21, 398: 21, 477: 21, 436: 21, 425: 20, 356: 20, 459: 20, 343: 20, 447: 20, 438: 20, 445: 20, 414: 19, 411: 19, 496: 19, 413: 18, 367: 18, 418: 18, 417: 18, 410: 18, 359: 18, 385: 17, 419: 17, 412: 17, 428: 17, 380: 17, 453: 17, 424: 16, 483: 16, 370: 16, 430: 16, 427: 16, 473: 16, 472: 16, 350: 15, 420: 15, 399: 15, 510: 15, 454: 15, 462: 15, 450: 15, 422: 15, 437: 15, 397: 14, 544: 14, 439: 14, 440: 14, 287: 14, 474: 14, 460: 14, 446: 13, 433: 13, 465: 13, 493: 13, 471: 13, 456: 13, 451: 13, 421: 13, 481: 13, 488: 13, 492: 13, 537: 13, 409: 13, 461: 13, 509: 13, 535: 13, 558: 12, 426: 12, 458: 12, 335: 12, 482: 12, 562: 12, 415: 11, 505: 11, 512: 11, 504: 11, 616: 11, 549: 11, 441: 11, 484: 11, 645: 11, 536: 11, 490: 11, 476: 11, 435: 11, 572: 11, 539: 11, 486: 10, 556: 10, 443: 10, 580: 10, 592: 10, 552: 10, 523: 10, 448: 10, 506: 10, 452: 10, 538: 10, 612: 10, 550: 10, 534: 10, 514: 10, 570: 10, 469: 10, 495: 10, 522: 10, 576: 10, 442: 10, 499: 10, 407: 9, 491: 9, 520: 9, 517: 9, 524: 9, 529: 9, 601: 9, 467: 9, 568: 9, 546: 9, 470: 9, 516: 9, 463: 9, 487: 9, 508: 9, 383: 9, 485: 9, 518: 8, 532: 8, 553: 8, 574: 8, 571: 8, 466: 8, 478: 8, 497: 8, 640: 8, 542: 8, 634: 8, 501: 8, 475: 8, 573: 8, 560: 8, 489: 7, 531: 7, 540: 7, 593: 7, 603: 7, 545: 7, 557: 7, 533: 7, 547: 7, 507: 7, 502: 7, 449: 7, 664: 7, 565: 7, 513: 7, 688: 6, 615: 6, 559: 6, 625: 6, 530: 6, 543: 6, 628: 6, 600: 6, 525: 6, 605: 6, 577: 6, 720: 6, 578: 6, 521: 6, 759: 6, 515: 6, 585: 6, 503: 6, 519: 6, 724: 6, 567: 6, 498: 6, 661: 5, 548: 5, 638: 5, 587: 5, 654: 5, 805: 5, 618: 5, 622: 5, 744: 5, 598: 5, 586: 5, 455: 5, 630: 5, 566: 5, 624: 5, 610: 5, 617: 5, 731: 5, 660: 5, 583: 5, 704: 5, 639: 5, 594: 5, 651: 5, 554: 5, 589: 5, 655: 5, 595: 5, 656: 4, 563: 4, 511: 4, 584: 4, 826: 4, 613: 4, 646: 4, 680: 4, 644: 4, 620: 4, 686: 4, 658: 4, 588: 4, 663: 4, 678: 4, 500: 4, 792: 4, 666: 4, 619: 4, 564: 4, 699: 4, 800: 4, 590: 4, 742: 4, 604: 4, 770: 4, 732: 4, 736: 4, 606: 4, 643: 4, 797: 4, 431: 4, 872: 4, 714: 4, 627: 4, 608: 4, 648: 4, 602: 4, 635: 4, 691: 4, 692: 4, 777: 4, 810: 4, 629: 4, 551: 4, 672: 4, 668: 4, 659: 4, 763: 3, 626: 3, 859: 3, 681: 3, 793: 3, 667: 3, 581: 3, 675: 3, 870: 3, 609: 3, 631: 3, 989: 3, 614: 3, 756: 3, 708: 3, 637: 3, 541: 3, 729: 3, 754: 3, 494: 3, 713: 3, 611: 3, 868: 3, 816: 3, 711: 3, 746: 3, 807: 3, 676: 3, 689: 3, 607: 3, 679: 3, 685: 3, 632: 3, 673: 3, 526: 3, 597: 3, 842: 3, 569: 3, 725: 3, 925: 3, 702: 3, 761: 3, 555: 3, 780: 3, 696: 3, 697: 3, 751: 3, 657: 3, 591: 3, 841: 3, 830: 2, 848: 2, 669: 2, 835: 2, 1062: 2, 996: 2, 694: 2, 882: 2, 757: 2, 743: 2, 804: 2, 784: 2, 693: 2, 896: 2, 755: 2, 701: 2, 707: 2, 690: 2, 889: 2, 884: 2, 963: 2, 727: 2, 683: 2, 674: 2, 579: 2, 726: 2, 662: 2, 712: 2, 710: 2, 822: 2, 1114: 2, 735: 2, 1008: 2, 734: 2, 878: 2, 865: 2, 967: 2, 799: 2, 932: 2, 665: 2, 931: 2, 682: 2, 723: 2, 914: 2, 817: 2, 698: 2, 733: 2, 760: 2, 821: 2, 916: 2, 903: 2, 1106: 2, 874: 2, 641: 2, 787: 2, 988: 2, 824: 2, 894: 2, 866: 2, 930: 2, 738: 2, 952: 2, 582: 2, 765: 2, 705: 2, 836: 2, 709: 2, 887: 2, 633: 2, 840: 2, 839: 2, 778: 2, 1104: 2, 818: 2, 833: 2, 853: 2, 976: 1, 750: 1, 749: 1, 918: 1, 862: 1, 715: 1, 834: 1, 881: 1, 957: 1, 1076: 1, 728: 1, 561: 1, 962: 1, 621: 1, 1225: 1, 1144: 1, 1083: 1, 767: 1, 1014: 1, 779: 1, 747: 1, 1050: 1, 1066: 1, 892: 1, 1400: 1, 929: 1, 1250: 1, 852: 1, 1113: 1, 861: 1, 1080: 1, 1321: 1, 1044: 1, 1283: 1, 717: 1, 1011: 1, 1092: 1, 1287: 1, 1051: 1, 1003: 1, 796: 1, 814: 1, 753: 1, 1381: 1, 1111: 1, 945: 1, 935: 1, 1237: 1, 527: 1, 876: 1, 789: 1, 895: 1, 906: 1, 649: 1, 670: 1, 987: 1, 827: 1, 1314: 1, 1168: 1, 899: 1, 599: 1, 965: 1, 1194: 1, 831: 1, 684: 1, 946: 1, 934: 1, 721: 1, 1505: 1, 1027: 1, 1073: 1, 636: 1, 908: 1, 813: 1, 1188: 1, 820: 1, 860: 1, 1018: 1, 1409: 1, 768: 1, 966: 1, 758: 1, 1176: 1, 973: 1, 1165: 1, 1282: 1, 1084: 1, 986: 1, 1077: 1, 703: 1, 803: 1, 769: 1, 883: 1, 1514: 1, 776: 1, 823: 1, 978: 1, 730: 1, 1280: 1, 687: 1, 917: 1, 943: 1, 766: 1, 794: 1, 997: 1, 1039: 1, 774: 1, 953: 1, 1010: 1, 825: 1, 785: 1, 1147: 1, 716: 1, 812: 1, 873: 1, 1626: 1, 924: 1, 898: 1, 695: 1, 977: 1, 926: 1, 984: 1, 718: 1, 479: 1, 650: 1, 1203: 1, 652: 1, 1126: 1, 741: 1, 1260: 1, 1624: 1, 900: 1, 941: 1, 773: 1, 790: 1, 706: 1, 737: 1, 1087: 1, 642: 1, 575: 1, 1234: 1, 1097: 1, 772: 1, 947: 1, 596: 1, 771: 1, 745: 1, 847: 1, 647: 1, 979: 1, 819: 1, 764: 1, 748: 1, 1009: 1, 1208: 1, 901: 1, 781: 1, 1071: 1}
Height dict:{48: 50000}
label max len:  77
classify num:  3096
  • 生成字符长度为1,2,3,4,5的数据集各2000张,共10000张。

  • 部分生成图片示例如:

    

In [ ]

!cd ~/work/text_renderer && python main.py --length 1 --img_width 32 --img_height 48 --chars_file "./data/chars/ch.txt" --corpus_mode 'random' --num_img 2000
!cd ~/work/text_renderer && python main.py --length 2 --img_width 64 --img_height 48 --chars_file "./data/chars/ch.txt" --corpus_mode 'random' --num_img 2000
!cd ~/work/text_renderer && python main.py --length 3 --img_width 96 --img_height 48 --chars_file "./data/chars/ch.txt" --corpus_mode 'random' --num_img 2000
!cd ~/work/text_renderer && python main.py --length 4 --img_width 128 --img_height 48 --chars_file "./data/chars/ch.txt" --corpus_mode 'random' --num_img 2000
!cd ~/work/text_renderer && python main.py --length 5 --img_width 160 --img_height 48 --chars_file "./data/chars/ch.txt" --corpus_mode 'random' --num_img 2000
Total fonts num: 1
Background num: 1
Generate text images in ./output/default
2000/2000 100%
Finish generate data: 5.758 s
Total fonts num: 1
Background num: 1
Generate more text images in ./output/default. Start index 2000
2000/2000 100%
Finish generate data: 8.900 s
Total fonts num: 1
Background num: 1
Generate more text images in ./output/default. Start index 4000
2000/2000 100%
Finish generate data: 11.872 s
Total fonts num: 1
Background num: 1
Generate more text images in ./output/default. Start index 6000
2000/2000 100%
Finish generate data: 16.067 s
Total fonts num: 1
Background num: 1
Generate more text images in ./output/default. Start index 8000
2000/2000 100%
Finish generate data: 19.593 s
  • 将生成的数据集与原数据集合并

In [ ]

!cp ~/work/text_renderer/output/default/*.jpg ~/data/train_images

In [ ]

import os

with open('work/text_renderer/output/default/tmp_labels.txt','r',encoding='utf-8') as src_label:
    with open('data/train_label.txt','a',encoding='utf-8') as dst_label:
        lines = src_label.readlines()
        for line in lines:
            [img,text] = line.split(' ')
            print('{}.jpg\t{}'.format(img,text),file=dst_label,end='')

三、模型调整

  • 加载CRNN预训练模型
  • 改变默认输入图片尺寸,变为为height48,width256
  • 优化学习率策略,通过cosine_decay和warmup策略加快模型收敛

CRNN模型介绍

  • 本项目模型采用文字识别经典CRNN模型(CNN+RNN+CTC),其中部分模型代码经过PaddleOCR源码改编,完成识别模型的搭建、训练、评估和预测过程。训练时可以手动更改config配置文件(数据训练、加载、评估验证等参数),默认采用优化器采用Adam,使用CTC损失函数。本项目采用ResNet34作为骨干网络。
CRNN网络结构包含三部分,从下到上依次为:

(1)卷积层。作用是从输入图像中提取特征序列。

(2)循环层。作用是预测从卷积层获取的特征序列的标签(真实值)分布。

(3)转录层。作用是把从循环层获取的标签分布通过去重整合等操作转换成最终的识别结果。

In [ ]

!cd ~/work/PaddleOCR && mkdir pretrain_weights && cd pretrain_weights && wget https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar
--2022-09-30 17:16:20--  https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar
Resolving paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)... 220.181.33.43, 220.181.33.44, 2409:8c04:1001:1002:0:ff:b001:368a
Connecting to paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)|220.181.33.43|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 297577776 (284M) [application/x-tar]
Saving to: ‘ch_ppocr_server_v1.1_rec_pre.tar’

ch_ppocr_server_v1. 100%[===================>] 283.79M  46.8MB/s    in 5.3s    

2022-09-30 17:16:26 (53.2 MB/s) - ‘ch_ppocr_server_v1.1_rec_pre.tar’ saved [297577776/297577776]

In [ ]

!cd ~/work/PaddleOCR/pretrain_weights && tar -xf ch_ppocr_server_v1.1_rec_pre.tar
  • 在PaddleOCR/configs/rec中,添加训练配置文件 my_rec_ch_train.yml和my_rec_ch_reader.yml
#my_rec_ch_train.yml
Global:
  algorithm: CRNN
  use_gpu: true
  epoch_num: 201
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/my_rec_ch
  save_epoch_step: 50
  eval_batch_step: 100000000
  train_batch_size_per_card: 64
  test_batch_size_per_card: 64
  image_shape: [3, 48, 256]
  max_text_length: 80
  character_type: ch
  character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
  loss_type: ctc
  distort: true
  use_space_char: true
  reader_yml: ./configs/rec/my_rec_ch_reader.yml
  pretrain_weights: ./pretrain_weights/ch_ppocr_server_v1.1_rec_pre/best_accuracy
  checkpoints:
  save_inference_dir: 
  infer_img:

Architecture:
  function: ppocr.modeling.architectures.rec_model,RecModel

Backbone:
  function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
  layers: 34

Head:
  function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
  encoder_type: rnn
  fc_decay: 0.00004
  SeqRNN:
    hidden_size: 256
    
Loss:
  function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss

Optimizer:
  function: ppocr.optimizer,AdamDecay
  base_lr: 0.0001
  l2_decay: 0.00004
  beta1: 0.9
  beta2: 0.999
  decay:
    function: cosine_decay_warmup
    step_each_epoch: 1000
    total_epoch: 201
    warmup_minibatch: 2000
#my_rec_ch_reader.yml
TrainReader:
  reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
  num_workers: 1
  img_set_dir: /home/aistudio/data/train_images
  label_file_path: /home/aistudio/data/train_label.txt
  
EvalReader:
  reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
  img_set_dir: /home/aistudio/data/train_images
  label_file_path: /home/aistudio/data/train_label.txt

TestReader:
  reader_function: ppocr.data.rec.dataset_traversal,SimpleReader

四、训练与预测

4.1 训练模型

  • 根据修改后的配置文件,输入以下命令就可以开始训练。

In [33]

!pwd
!cd ~/work/PaddleOCR && python tools/train.py -c configs/rec/my_rec_ch_train.yml

4.2导出模型

通过export_model.py导出模型,设置配置文件及导出路径。

In [34]

!cd ~/work/PaddleOCR && python tools/export_model.py -c configs/rec/my_rec_ch_train.yml -o Global.checkpoints=./output/my_rec_ch/iter_epoch_27 Global.save_inference_dir=./inference/CRNN_R34
2022-09-30 22:57:53,971-INFO: {'Global': {'debug': False, 'algorithm': 'CRNN', 'use_gpu': True, 'epoch_num': 201, 'log_smooth_window': 20, 'print_batch_step': 10, 'save_model_dir': './output/my_rec_ch', 'save_epoch_step': 3, 'eval_batch_step': 100000000, 'train_batch_size_per_card': 64, 'test_batch_size_per_card': 64, 'image_shape': [3, 48, 256], 'max_text_length': 80, 'character_type': 'ch', 'character_dict_path': './ppocr/utils/ppocr_keys_v1.txt', 'loss_type': 'ctc', 'distort': True, 'use_space_char': True, 'reader_yml': './configs/rec/my_rec_ch_reader.yml', 'pretrain_weights': './pretrain_weights/ch_ppocr_server_v1.1_rec_pre/best_accuracy', 'checkpoints': './output/my_rec_ch/iter_epoch_27', 'save_inference_dir': './inference/CRNN_R34', 'infer_img': None}, 'Architecture': {'function': 'ppocr.modeling.architectures.rec_model,RecModel'}, 'Backbone': {'function': 'ppocr.modeling.backbones.rec_resnet_vd,ResNet', 'layers': 34}, 'Head': {'function': 'ppocr.modeling.heads.rec_ctc_head,CTCPredict', 'encoder_type': 'rnn', 'fc_decay': 4e-05, 'SeqRNN': {'hidden_size': 256}}, 'Loss': {'function': 'ppocr.modeling.losses.rec_ctc_loss,CTCLoss'}, 'Optimizer': {'function': 'ppocr.optimizer,AdamDecay', 'base_lr': 0.0001, 'l2_decay': 4e-05, 'beta1': 0.9, 'beta2': 0.999, 'decay': {'function': 'cosine_decay_warmup', 'step_each_epoch': 1000, 'total_epoch': 201, 'warmup_minibatch': 2000}}, 'TrainReader': {'reader_function': 'ppocr.data.rec.dataset_traversal,SimpleReader', 'num_workers': 8, 'img_set_dir': '/home/aistudio/data/train_images', 'label_file_path': '/home/aistudio/data/train_label.txt'}, 'EvalReader': {'reader_function': 'ppocr.data.rec.dataset_traversal,SimpleReader', 'img_set_dir': '/home/aistudio/data/train_images', 'label_file_path': '/home/aistudio/data/train_label.txt'}, 'TestReader': {'reader_function': 'ppocr.data.rec.dataset_traversal,SimpleReader'}}
W0930 22:57:54.222055 22198 device_context.cc:252] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 11.2, Runtime API Version: 9.0
W0930 22:57:54.227607 22198 device_context.cc:260] device: 0, cuDNN Version: 7.6.
2022-09-30 22:57:57,220-INFO: Finish initing model from ./output/my_rec_ch/iter_epoch_27
inference model saved in ./inference/CRNN_R34/model and ./inference/CRNN_R34/params
save success, output_name_list: ['decoded_out', 'predicts']

4.3预测结果

修改模型路径,运行predict.py:

import sys 
import os

from paddleocr import PaddleOCR
import numpy as np
import glob
import time
if __name__=='__main__':

    # Preference
    img_set_dir = os.path.join('..','data','test_images','')
    
    # Load model
    use_gpu = True 
    use_angle_cls = False 
    det = False
    det_model_dir = os.path.join('PaddleOCR','inference','ch_ppocr_mobile_v1.1_det_infer')
    cls_model_dir = os.path.join('PaddleOCR','inference','ch_ppocr_mobile_v1.1_cls_infer')
    rec_model_dir = os.path.join('PaddleOCR','inference','CRNN_R34')
    ocr = PaddleOCR(use_angle_cls=use_angle_cls, lang="ch",use_gpu=use_gpu,use_space_char=False,gpu_mem=4000,
                    det = det,
                    rec_image_shape = '3, 48, 256', 
                    rec_algorithm = 'CRNN',
                    max_text_length = 80,
                    det_model_dir = det_model_dir,
                    cls_model_dir = cls_model_dir,
                    rec_model_dir = rec_model_dir
                    )

    # Load data in a folder
    images = glob.glob(img_set_dir+'*.jpg')

    log_file_name = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
    # Print result to a file
    with open(log_file_name+'.txt','w') as fid:
        print('new_name\tvalue',file=fid)
        #Inference in a folder
        for image in images:
            result = ocr.ocr(image, cls=use_angle_cls,det=det)
            if result is None:
                print('Test {} failed.'.format(image.replace(img_set_dir,'')))
                continue

            for info in result:
                pred_label = info[0]
                print('{}\t{}'.format(image.replace(img_set_dir,''),pred_label),file=fid)
    print("Finished predicting {} images!".format(len(images)))

In [35]

!pwd
!python ~/work/predict.py
/home/aistudio

最终结果以txt文件保存,命名格式Y-%m-%d-%H-%M-%S,保存在在/home/aistudio/目录下。

In [17]

#查看结果 txt文件生成
%cd /home/aistudio/
!cat 2022-09-30-22-58-06.txt | head -n 2

总结与后续:

1.目前只用resnet网络,后续考虑更换更多轻量级网络测试效果;

2.后续继续对数据进行增强操作或结合更多相关数据集,增加模型的泛化性;

3.继续精调整学习率大小及训练策略调整,提升模型的收敛速度及准确度。

参考资料

  • PaddleOCR官方教程
  • PaddleOCR:中文场景文字识别

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/188720.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每日学术速递1.31

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 今天带来的arXiv上最新发表的3篇NLP论文。 Subjects: cs.CL、cs.AI、cs.DB、cs.LG 1.Editing Language Model-based Knowledge Graph Embeddings 标题&#xff1a;编辑基于语言模型的知识图谱嵌入 作…

C语言求幂运算——奇特中文变量命名

写在前面 主要涉及C/C趣味编程应用及解析面向初学者撰写专栏&#xff0c;个人代码原创如有错误之处请各位读者指正&#xff0c;各位可以类比做自己的编程作业请读者评论回复、参与投票&#xff0c;反馈给作者&#xff0c;我会获得持续更新各类干货的动力。 致粉丝&#xff1a;…

【Rust】8. 包、Crate 和 模块管理(公有、私有特性)

8.1 包和 Crate 8.1.1 基本概念 crate 是 Rust 在编译时最小的代码单位&#xff1b;crate 有两种形式&#xff1a;二进制项&#xff08;可以被编译为可执行程序&#xff09;和库&#xff08;没有 main 函数&#xff0c;也不会编译为可执行程序&#xff0c;而是提供一些诸如函…

Selenium+Java+Maven(12):引入Allure作为报告生成器

一、前言 本篇作为SeleniumJava系列的补充&#xff0c;讲了如何使用Allure作为测试报告生成器&#xff0c;来替代TestNG自带的测试报告或ReportNG测试报告&#xff0c;生成更加美观的&#xff08;领导更喜欢的&#xff09;测试报表。话不多说&#xff0c;一起来学习吧~ 二、A…

蒙特卡洛算法详解

蒙特卡洛算法是20世纪十大最伟大的算法之一&#xff0c;阿法狗就采用了蒙特卡洛算法。 1、定义 蒙特卡洛方法也称为 计算机随机模拟方法&#xff0c;它源于世界著名的赌城——摩纳哥的Monte Carlo(蒙特卡洛)。 它是基于对大量事件的统计结果来实现一些确定性问题的计算。其实…

什么是独立性?如何提高独立性?

独立是每个人必经的成长阶段&#xff0c;也是实现人生价值最重要的途径。没有独立就不能实现真正意义上的人生。独立是我们克服困难、实现抱负的最重要的精神力量&#xff0c;也是我们收获幸福的保障。1、什么是独立性&#xff1f;独立性是意志指不受他人影响、能够独立解决问题…

迟到两年的求职总结经验分享

迟到两年的求职总结&经验分享 写在前面 ​ 号主于2021年3月-2021年9月断断续续参加了校园招聘&#xff0c;包括但不限于&#xff1a;暑期实习、秋招提前批、秋招正式批。收获offer包括但不限于&#xff1a;某互联网推荐算法工程师、某通讯公司数据挖掘工程师、某金融科技…

docker 安装mysql8

docker 安装mysql8无法远程登录 # 启动容器 docker run \ -p 13306:3306 \ --name mysql \ --privilegedtrue \ --restartalways \ -v /home/mysqldata/mysql:/etc/mysql \ -v /home/mysqldata/mysql/logs:/logs \ -v /home/mysqldata/mysql/data:/var/lib/mysql \ -v /etc/l…

C++11线程间共享数据

C11线程间共享数据 使用全局变量等不考虑安全的方式以及原子变量这里就不进行说明了。 在多线程中的全局变量&#xff0c;就好比现实生活中的公共资源一样&#xff0c;比如你有一个同时只能允许一个人做饭的厨房&#xff0c;那么在你占用期间&#xff0c;你的室友就必须等待。…

synchronized锁的升级

synchronized锁优化的背景 用锁能够实现数据的安全性&#xff0c;但是会带来性能的下降 无锁能够基于线程并行提升程序性能&#xff0c;带来安全性的下降 java5 synchronized默认是重量级锁&#xff0c;java6以后引入偏向锁和轻量锁&#xff0c;java15 逐步废弃了偏向锁 …

机器学习实战(第二版)读书笔记(4)——seq2seq模型注意力机制(BahdanauAttention,LuongAttention)详解

一、Seq2seq模型 机器学习实战(第二版)读书笔记(1)——循环神经网络&#xff08;RNN&#xff09; 中详细介绍了RNN如下图1所示&#xff0c;可以发现RNN结构大多数对序列长度比较局限&#xff0c;对于机器翻译等任务(输入输出长度不想等N to M)&#xff0c;RNN没办法处理&…

SVN使用:Mac电脑中修改SVN输出信息为英文的方法

前言 作为软件开发人员&#xff0c;关于项目代码管理以及维护想必都不陌生&#xff0c;尤其是在团队协作的时候&#xff0c;多人开发维护同一个项目更是需要代码管理。关于项目代码管理维护工具&#xff0c;常用的就是Git、SVN等管理工具。本篇文章只来分享一下关于SVN的配置设…

C语言学习笔记-常量

“常量”的广义概念是&#xff1a;‘不变化的量’。例如&#xff1a;在计算机程序运行时&#xff0c;不会被程序修改的量。 以上是百度百科上对常量的部分定义。C语言的学习过程中将会接触很多的常量&#xff0c;不同类型的常量其定义、用法等会有所差异。要搞清楚他们的相似与…

如何恢复已删除的文件?5分钟搞定的简单方法。

本文介绍如何使用文件恢复程序恢复已删除的文件。它包括与恢复已删除文件相关的提示。 如何恢复已删除的文件 从硬盘驱动器恢复已删除的文件并不是一件疯狂的事情&#xff0c;但一旦您意识到文件已被删除&#xff0c;就尝试恢复会有所帮助。被删除的文件通常不会被真正删除&am…

终于有人把数据仓库讲明白了

数仓概念 ⚫ 数据仓库&#xff08;英语&#xff1a;Data Warehouse&#xff0c;简称数仓、DW&#xff09;,是一个用于存储、分析、报告的数据系统。 ⚫ 数据仓库的目的是构建面向分析的集成化数据环境&#xff0c;分析结果为企业提供决策支持&#xff08;Decision Support&am…

Linux入门教程|| Linux 忘记密码解决方法|| Linux 远程登录

很多朋友经常会忘记Linux系统的root密码&#xff0c;linux系统忘记root密码的情况该怎么办呢&#xff1f;重新安装系统吗&#xff1f;当然不用&#xff01;进入单用户模式更改一下root密码即可。 步骤如下&#xff1a; 重启linux系统 3 秒之内要按一下回车&#xff0c;出现如…

解决Error: Electron failed to install correctly, please delete......报错的问题

问题 在启动electron项目的时候&#xff0c;报mlgb错 Error: Electron failed to install correctly, please delete node_modules/electron and try installing again 搞了 好久 才解决 原因 升级Electron到7.0.0&#xff0c;提示Electron failed to install correctly, p…

python数据可视化开发(3):使用psutil和socket模块获取电脑系统信息(Mac地址、IP地址、主机名、系统用户、硬盘、CPU、内存、网络)

系列文章目录 python开发低代码数据可视化大屏&#xff1a;pandas.read_excel读取表格python实现直接读取excle数据实现的百度地图标注python数据可视化开发(1)&#xff1a;Matplotlib库基础知识python数据可视化开发(2)&#xff1a;pandas读取Excel的数据格式处理 文章目录系…

Linux下监控类命令:ps,du,top,df,free详解

Linux下监控类命令top命令top信息解释top参数使用ps命令ps信息解释ps参数使用du和dffree命令top命令 top命令&#xff0c;是Linux下常用的性能分析工具&#xff0c;能够实时显示系统中各个进程的资源占用状况&#xff0c;一般系统资源导致的崩溃问题可以使用top实时监控各进程…

魔兽世界服务器架设开服教程(巫妖王之怒外网详细教程)

魔兽世界服务器架设开服教程&#xff08;巫妖王之怒外网详细教程&#xff09;首先需要了解魔兽各个重要文件详细情况说明不管是任何一个魔兽世界GM想要将服务器修改成为自己想要的样子&#xff0c;首先要做的一件事情就是了解自己的服务器文件是说明意思&#xff0c;对于大多数…