昇思25天学习打卡营第13天 | SSD目标检测

news2025/1/16 15:54:07

模型简介

SSD,全称Single Shot MultiBox Detector,是Wei Liu在ECCV 2016上提出的一种目标检测算法。使用Nvidia Titan X在VOC 2007测试集上,SSD对于输入尺寸300x300的网络,达到74.3%mAP(mean Average Precision)以及59FPS;对于512x512的网络,达到了76.9%mAP ,超越当时最强的Faster RCNN(73.2%mAP)。具体可参考论文[1]。 SSD目标检测主流算法分成可以两个类型:

  1. two-stage方法:RCNN系列

    通过算法产生候选框,然后再对这些候选框进行分类和回归。

  2. one-stage方法:YOLO和SSD

    直接通过主干网络给出类别位置信息,不需要区域生成。

SSD是单阶段的目标检测算法,通过卷积神经网络进行特征提取,取不同的特征层进行检测输出,所以SSD是一种多尺度的检测方法。在需要检测的特征层,直接使用一个3 ×× 3卷积,进行通道的变换。SSD采用了anchor的策略,预设不同长宽比例的anchor,每一个输出特征层基于anchor预测多个检测框(4或者6)。采用了多尺度检测方法,浅层用于检测小目标,深层用于检测大目标。SSD的框架如下图:

SSD-1

模型结构

SSD采用VGG16作为基础模型,然后在VGG16的基础上新增了卷积层来获得更多的特征图以用于检测。SSD的网络结构如图所示。上面是SSD模型,下面是YOLO模型,可以明显看到SSD利用了多尺度的特征图做检测。

SSD-2

两种单阶段目标检测算法的比较:
SSD先通过卷积不断进行特征提取,在需要检测物体的网络,直接通过一个3 ×× 3卷积得到输出,卷积的通道数由anchor数量和类别数量决定,具体为(anchor数量*(类别数量+4))。
SSD对比了YOLO系列目标检测方法,不同的是SSD通过卷积得到最后的边界框,而YOLO对最后的输出采用全连接的形式得到一维向量,对向量进行拆解得到最终的检测框。

模型特点

  • 多尺度检测

    在SSD的网络结构图中我们可以看到,SSD使用了多个特征层,特征层的尺寸分别是38 ×× 38,19 ×× 19,10 ×× 10,5 ×× 5,3 ×× 3,1 ×× 1,一共6种不同的特征图尺寸。大尺度特征图(较靠前的特征图)可以用来检测小物体,而小尺度特征图(较靠后的特征图)用来检测大物体。多尺度检测的方式,可以使得检测更加充分(SSD属于密集检测),更能检测出小目标。

  • 采用卷积进行检测

    与YOLO最后采用全连接层不同,SSD直接采用卷积对不同的特征图来进行提取检测结果。对于形状为m ×× n ×× p的特征图,只需要采用3 ×× 3 ×× p这样比较小的卷积核得到检测值。

  • 预设anchor

    在YOLOv1中,直接由网络预测目标的尺寸,这种方式使得预测框的长宽比和尺寸没有限制,难以训练。在SSD中,采用预设边界框,我们习惯称它为anchor(在SSD论文中叫default bounding boxes),预测框的尺寸在anchor的指导下进行微调。

数据采样

为了使模型对于各种输入对象大小和形状更加鲁棒,SSD算法每个训练图像通过以下选项之一随机采样:

  • 使用整个原始输入图像

  • 采样一个区域,使采样区域和原始图片最小的交并比重叠为0.1,0.3,0.5,0.7或0.9

  • 随机采样一个区域

每个采样区域的大小为原始图像大小的[0.3,1],长宽比在1/2和2之间。如果真实标签框中心在采样区域内,则保留两者重叠部分作为新图片的真实标注框。在上述采样步骤之后,将每个采样区域大小调整为固定大小,并以0.5的概率水平翻转。

模型构建

SSD的网络结构主要分为以下几个部分:

SSD-3

  • VGG16 Base Layer

  • Extra Feature Layer

  • Detection Layer

  • NMS

  • Anchor

Backbone Layer

SSD-4

输入图像经过预处理后大小固定为300×300,首先经过backbone,本案例中使用的是VGG16网络的前13个卷积层,然后分别将VGG16的全连接层fc6和fc7转换成3 ×× 3卷积层block6和1 ×× 1卷积层block7,进一步提取特征。 在block6中,使用了空洞数为6的空洞卷积,其padding也为6,这样做同样也是为了增加感受野的同时保持参数量与特征图尺寸的不变。

Extra Feature Layer

在VGG16的基础上,SSD进一步增加了4个深度卷积层,用于提取更高层的语义信息:

SSD-5

block8-11,用于更高语义信息的提取。block8的通道数为512,而block9、block10与block11的通道数都为256。从block7到block11,这5个卷积后输出特征图的尺寸依次为19×19、10×10、5×5、3×3和1×1。为了降低参数量,使用了1×1卷积先降低通道数为该层输出通道数的一半,再利用3×3卷积进行特征提取。

Anchor

SSD采用了PriorBox来进行区域生成。将固定大小宽高的PriorBox作为先验的感兴趣区域,利用一个阶段完成能够分类与回归。设计大量的密集的PriorBox保证了对整幅图像的每个地方都有检测。PriorBox位置的表示形式是以中心点坐标和框的宽、高(cx,cy,w,h)来表示的,同时都转换成百分比的形式。 PriorBox生成规则: SSD由6个特征层来检测目标,在不同特征层上,PriorBox的尺寸scale大小是不一样的,最低层的scale=0.1,最高层的scale=0.95,其他层的计算公式如下:

SSD-6

在某个特征层上其scale一定,那么会设置不同长宽比ratio的PriorBox,其长和宽的计算公式如下:

SSD-7

在ratio=1的时候,还会根据该特征层和下一个特征层计算一个特定scale的PriorBox(长宽比ratio=1),计算公式如下:

SSD-8

每个特征层的每个点都会以上述规则生成PriorBox,(cx,cy)由当前点的中心点来确定,由此每个特征层都生成大量密集的PriorBox,如下图:

SSD-9

SSD使用了第4、7、8、9、10和11这6个卷积层得到的特征图,这6个特征图尺寸越来越小,而其对应的感受野越来越大。6个特征图上的每一个点分别对应4、6、6、6、4、4个PriorBox。某个特征图上的一个点根据下采样率可以得到在原图的坐标,以该坐标为中心生成4个或6个不同大小的PriorBox,然后利用特征图的特征去预测每一个PriorBox对应类别与位置的预测量。例如:第8个卷积层得到的特征图大小为10×10×512,每个点对应6个PriorBox,一共有600个PriorBox。定义MultiBox类,生成多个预测框。

Detection Layer

SSD-10

SSD模型一共有6个预测特征图,对于其中一个尺寸为m*n,通道为p的预测特征图,假设其每个像素点会产生k个anchor,每个anchor会对应c个类别和4个回归偏移量,使用(4+c)k个尺寸为3x3,通道为p的卷积核对该预测特征图进行卷积操作,得到尺寸为m*n,通道为(4+c)m*k的输出特征图,它包含了预测特征图上所产生的每个anchor的回归偏移量和各类别概率分数。所以对于尺寸为m*n的预测特征图,总共会产生(4+c)k*m*n个结果。cls分支的输出通道数为k*class_num,loc分支的输出通道数为k*4。

损失函数

SSD算法的目标函数分为两部分:计算相应的预选框与目标类别的置信度误差(confidence loss, conf)以及相应的位置误差(locatization loss, loc):

SSD-11

其中:
N 是先验框的正样本数量;
c 为类别置信度预测值;
l 为先验框的所对应边界框的位置预测值;
g 为ground truth的位置参数
α 用以调整confidence loss和location loss之间的比例,默认为1。

对于位置损失函数

针对所有的正样本,采用 Smooth L1 Loss, 位置信息都是 encode 之后的位置信息。

SSD-12

对于置信度损失函数

置信度损失是多类置信度(c)上的softmax损失。

SSD-13

Metrics

在SSD中,训练过程是不需要用到非极大值抑制(NMS),但当进行检测时,例如输入一张图片要求输出框的时候,需要用到NMS过滤掉那些重叠度较大的预测框。
非极大值抑制的流程如下:

  1. 根据置信度得分进行排序

  2. 选择置信度最高的比边界框添加到最终输出列表中,将其从边界框列表中删除

  3. 计算所有边界框的面积

  4. 计算置信度最高的边界框与其它候选框的IoU

  5. 删除IoU大于阈值的边界框

  6. 重复上述过程,直至边界框列表为空

训练过程

(1)先验框匹配

在训练过程中,首先要确定训练图片中的ground truth(真实目标)与哪个先验框来进行匹配,与之匹配的先验框所对应的边界框将负责预测它。

SSD的先验框与ground truth的匹配原则主要有两点:

  1. 对于图片中每个ground truth,找到与其IOU最大的先验框,该先验框与其匹配,这样可以保证每个ground truth一定与某个先验框匹配。通常称与ground truth匹配的先验框为正样本,反之,若一个先验框没有与任何ground truth进行匹配,那么该先验框只能与背景匹配,就是负样本。

  2. 对于剩余的未匹配先验框,若某个ground truth的IOU大于某个阈值(一般是0.5),那么该先验框也与这个ground truth进行匹配。尽管一个ground truth可以与多个先验框匹配,但是ground truth相对先验框还是太少了,所以负样本相对正样本会很多。为了保证正负样本尽量平衡,SSD采用了hard negative mining,就是对负样本进行抽样,抽样时按照置信度误差(预测背景的置信度越小,误差越大)进行降序排列,选取误差的较大的top-k作为训练的负样本,以保证正负样本比例接近1:3。

注意点:

  1. 通常称与gt匹配的prior为正样本,反之,若某一个prior没有与任何一个gt匹配,则为负样本。

  2. 某个gt可以和多个prior匹配,而每个prior只能和一个gt进行匹配。

  3. 如果多个gt和某一个prior的IOU均大于阈值,那么prior只与IOU最大的那个进行匹配。

SSD-14

如上图所示,训练过程中的 prior boxes 和 ground truth boxes 的匹配,基本思路是:让每一个 prior box 回归并且到 ground truth box,这个过程的调控我们需要损失层的帮助,他会计算真实值和预测值之间的误差,从而指导学习的走向。

(2)损失函数

损失函数使用的是上文提到的位置损失函数和置信度损失函数的加权和。

(3)数据增强

使用之前定义好的数据增强方式,对创建好的数据增强方式进行数据增强。

模型训练时,设置模型训练的epoch次数为60,然后通过create_ssd_dataset类创建了训练集和验证集。batch_size大小为5,图像尺寸统一调整为300×300。损失函数使用位置损失函数和置信度损失函数的加权和,优化器使用Momentum,并设置初始学习率为0.001。回调函数方面使用了LossMonitor和TimeMonitor来监控训练过程中每个epoch结束后,损失值Loss的变化情况以及每个epoch、每个step的运行时间。设置每训练10个epoch保存一次模型。

评估

自定义eval_net()类对训练好的模型进行评估,调用了上述定义的SsdInferWithDecoder类返回预测的坐标及标签,然后分别计算了在不同的IoU阈值、area和maxDets设置下的Average Precision(AP)和Average Recall(AR)。使用COCOMetrics类计算mAP。模型在测试集上的评估指标如下。

精确率(AP)和召回率(AR)的解释

  • TP:IoU>设定的阈值的检测框数量(同一Ground Truth只计算一次)。

  • FP:IoU<=设定的阈值的检测框,或者是检测到同一个GT的多余检测框的数量。

  • FN:没有检测到的GT的数量。

精确率(AP)和召回率(AR)的公式

  • 精确率(Average Precision,AP):

    SSD-15

    精确率是将正样本预测正确的结果与正样本预测的结果和预测错误的结果的和的比值,主要反映出预测结果错误率。

  • 召回率(Average Recall,AR):

    SSD-16

    召回率是正样本预测正确的结果与正样本预测正确的结果和正样本预测错误的和的比值,主要反映出来的是预测结果中的漏检率。

关于以下代码运行结果的输出指标

  • 第一个值即为mAP(mean Average Precision), 即各类别AP的平均值。

  • 第二个值是iou取0.5的mAP值,是voc的评判标准。

  • 第三个值是评判较为严格的mAP值,可以反应算法框的位置精准程度;中间几个数为物体大小的mAP值。

对于AR看一下maxDets=10/100的mAR值,反应检出率,如果两者接近,说明对于这个数据集来说,不用检测出100个框,可以提高性能。

又是没有跑出来。。。。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1885786.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

周界入侵自动监测摄像机

当今&#xff0c;随着科技的快速发展&#xff0c;周界入侵自动监测摄像机作为安全监控领域的重要创新&#xff0c;正逐渐成为各类场所安全防范的核心设备。这种摄像机以其先进的监测和预警功能&#xff0c;有效提升了安全管理的效率和实时响应能力&#xff0c;被广泛应用于各类…

电子看板,帮助工厂实现数字化管理

在数字化浪潮的推动下&#xff0c;制造业正经历着深刻的变革&#xff0c;数字工厂成为了行业发展的新趋势。而生产管理看板作为一种重要的管理工具&#xff0c;在提升数字工厂管理效率方面发挥着关键作用。 生产管理看板通过实时数据的展示&#xff0c;为数字工厂提供了清晰的全…

【微信小程序开发实战项目】——如何制作一个属于自己的花店微信小程序(1)

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

Windows10录屏,教你3个方法,简单快速录屏

“我的电脑系统是Windows10的系统&#xff0c;今晚要进行线上开会&#xff0c;但我实在有事没办法参加会议&#xff0c;想把会议的内容录制下来方便我后续观看。但却找不到电脑录屏功能在哪里打开&#xff1f;求助一下&#xff0c;谁能帮帮我&#xff1f;” 在数字化时代&…

软考 有向图 数据库之关系模式范式

假设有一个关系 R(A, B, C, D)&#xff0c;并且已知以下函数依赖&#xff1a; A → B B → C BC → D 求候选键? 求候选码? 候选键/候选码 是同一个概念. 数据库范式也分为1NF,2NF,3NF,BCNF,4NF,5NF。 https://cloud.tencent.com/developer/article/2055118 2NF在1NF的基础…

如何定制化 ListView 界面

&#x1f604;作者简介&#xff1a; 小曾同学.com,一个致力于测试开发的博主⛽️&#xff0c;主要职责&#xff1a;测试开发、CI/CD 如果文章知识点有错误的地方&#xff0c;还请大家指正&#xff0c;让我们一起学习&#xff0c;一起进步。 &#x1f60a; 座右铭&#xff1a;不…

PostgreSQL主从同步

目录 一、主从复制原理 二、配置主数据库 2.1 创建同步账号 2.2 配置同步账号访问控制 2.3 设置同步参数 3.4 重启主数据库 三、配置从数据库 3.1 停止从库 3.2 清空从库数据文件 3.3 拉取主库数据文件 3.4 配置从库同步参数 3.5 启动从库 四、测试主从 4.1在主库…

33 包装器

c11 也叫适配器。c中的function本质是一个类模板&#xff0c;也是一个包装器 为什么需要fuction呢&#xff1f; 当一个类型既可以是函数指针&#xff0c;也可以是仿函数和lambda比倒是&#xff0c;函数指针的类型不好理解&#xff0c;仿函数写起来麻烦&#xff0c;lambda无法拿…

前端基础:CSS(篇二)

目录 盒子 模型&#xff08;box-model&#xff09; 盒子 模型-内容区 代码 运行 盒子 模型-内边距 代码 运行 盒子 模型-边框 代码 运行 盒子 模型-外边距 代码 运行 清除浏览器的默认样式 代码 运行 盒子模型练习 代码 运行 ​编辑 文档流 浮…

IO模型与多路复用

前言 在Linux中有一句经典台词&#xff1a;“Linux一切皆文件”。IO操作是与文件进行交流的唯一方式&#xff0c;也就是说这是与Linux系统交流的唯一手段。就如同人与人之间的交流&#xff0c;如果我们连交流的方式都不甚了解&#xff0c;交流的效率就会变得低下。操作系统也是…

计算机专业的概念需要拓宽|终身学习之旅利:用FlowUs打造个性化学习记录知识库

计算机相关专业长期以来一直是热门选择&#xff0c;这主要得益于技术的快速发展和广泛的应用场景。随着AI技术的不断进步&#xff0c;这一趋势在未来几年内仍有望持续。以下是从不同角度对这个问题的分析&#xff1a; 从AI发展的角度&#xff1a; 技术革新&#xff1a;AI技术…

2024年地球生态学与绿色发展国际会议 (EEGD 2024)

2024年地球生态学与绿色发展国际会议 (EEGD 2024) International Conference on Earth Ecology and Green Development in 2024 【重要信息】 大会地点&#xff1a;济南 大会官网&#xff1a;http://www.iceegd.com 投稿邮箱&#xff1a;iceegdsub-conf.com 【注意&#xff1a…

新赛季守望先锋2延迟高怎么办?快速降低守望先锋2延迟的小妙招

随着守望先锋2新赛季的开启&#xff0c;这款游戏又引入了大量全新内容&#xff0c;包括新地图、新神话皮肤等。而之前在预告片最后出现的《变形金刚》系列标志性的变形音效&#xff0c;表明在本赛季将与《变形金刚》系列展开联动更是吸引了不少玩家的关注。因为7月9日变形金刚联…

安装Rabbitmq遇到的坑

&#xff01;&#xff01;&#xff01;一定要对号版本号 不同的虚拟机unbontu、cetenos和不同的erlang和不同的rabbitmq之间要对应下载对应版本 下面给出我的版本centos7erlangrabbitmq 分割线 安装好后&#xff0c;如果在虚拟机的服务器上可以打开&#xff0c;在本地浏览器…

【基于R语言群体遗传学】-3-计算等位基因频率

书接上文&#xff0c;我们讲完了哈代温伯格基因型频率&#xff0c;也使用数据进行了拟合&#xff0c;那么接下来就是考虑一些计算的问题&#xff1a; 【基于R语言群体遗传学】-1-哈代温伯格基因型比例-CSDN博客 【基于R语言群体遗传学】-2-模拟基因型&#xff08;simulating …

Hubstudio指纹浏览器:海外代理IP新选择,IPXProxy为何备受推崇?

许多人都会把Hubstudio指纹浏览器和代理IP进行搭配使用&#xff0c;为了保证网络操作的顺利进行&#xff0c;例如亚马逊的多账号管理。那有没有好用的海外代理IP呢&#xff0c;如何在Hubstudio指纹浏览器中使用代理IP呢&#xff1f; 下面就给大家推荐好用的一家海外IP代理&…

收银系统源码-千呼新零售2.0

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…

SMARTFORMS

page&#xff08;节点&#xff09;-> wondows(容器)

AI网络爬虫004:从东方财富网批量获取上市公司的全部新闻资讯

文章目录 一、目标二、输入内容三、输出内容一、目标 用户输入一个上市公司名称,然后程序自动从东方财富网批量获取上市公司的全部新闻资讯 查看相关元素在源代码中的位置: 新闻标题:<a href="http://finance.eastmoney.com/a/202405233084538683.html" targ…

Pytest+Allure+Yaml+PyMsql+Jenkins+Gitlab接口自动化(四)Jenkins配置

一、背景 Jenkins&#xff08;本地宿主机搭建&#xff09; 拉取GitLab(服务器)代码到在Jenkins工作空间本地运行并生成Allure测试报告 二、框架改动点 框架主运行程序需要先注释掉运行代码&#xff08;可不改&#xff0c;如果运行报allure找不到就直接注释掉&#xff09; …