昇思25天学习打卡营第13天|基于MobileNetV2的垃圾分类

news2024/10/7 2:15:45

MobileNetv2模型原理介绍

相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数α和分辨率系数β使模型满足不同应用场景的需求。

由于MobileNet网络中Relu激活函数处理低维特征信息时会存在大量的丢失,所以MobileNetV2网络提出使用倒残差结构(Inverted residual block)和Linear Bottlenecks来设计网络,以提高模型的准确率,且优化后的模型更小。

图中Inverted residual block结构是先使用1x1卷积进行升维,然后使用3x3的DepthWise卷积,最后使用1x1的卷积进行降维。

数据处理

数据准备

from download import download

# 下载data_en数据集
url = "https://ascend-professional-construction-dataset.obs.cn-north-4.myhuaweicloud.com:443/MindStudio-pc/data_en.zip" 
path = download(url, "./", kind="zip", replace=True)

数据加载

import math
import numpy as np
import os
import random

from matplotlib import pyplot as plt
from easydict import EasyDict
from PIL import Image
import numpy as np
import mindspore.nn as nn
from mindspore import ops as P
from mindspore.ops import add
from mindspore import Tensor
import mindspore.common.dtype as mstype
import mindspore.dataset as de
import mindspore.dataset.vision as C
import mindspore.dataset.transforms as C2
import mindspore as ms
from mindspore import set_context, nn, Tensor, load_checkpoint, save_checkpoint, export
from mindspore.train import Model
from mindspore.train import Callback, LossMonitor, ModelCheckpoint, CheckpointConfig

os.environ['GLOG_v'] = '3' # Log level includes 3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
os.environ['GLOG_logtostderr'] = '0' # 0:输出到文件,1:输出到屏幕
os.environ['GLOG_log_dir'] = '../../log' # 日志目录
os.environ['GLOG_stderrthreshold'] = '2' # 输出到目录也输出到屏幕:3(ERROR), 2(WARNING), 1(INFO), 0(DEBUG).
set_context(mode=ms.GRAPH_MODE, device_target="CPU", device_id=0) # 设置采用图模式执行,设备为Ascend#

配置后续训练、验证、推理用到的参数:

# 垃圾分类数据集标签,以及用于标签映射的字典。
garbage_classes = {
    '干垃圾': ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服'],
    '可回收物': ['报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张'],
    '湿垃圾': ['菜叶', '橙皮', '蛋壳', '香蕉皮'],
    '有害垃圾': ['电池', '药片胶囊', '荧光灯', '油漆桶']
}

class_cn = ['贝壳', '打火机', '旧镜子', '扫把', '陶瓷碗', '牙刷', '一次性筷子', '脏污衣服',
            '报纸', '玻璃制品', '篮球', '塑料瓶', '硬纸板', '玻璃瓶', '金属制品', '帽子', '易拉罐', '纸张',
            '菜叶', '橙皮', '蛋壳', '香蕉皮',
            '电池', '药片胶囊', '荧光灯', '油漆桶']
class_en = ['Seashell', 'Lighter','Old Mirror', 'Broom','Ceramic Bowl', 'Toothbrush','Disposable Chopsticks','Dirty Cloth',
            'Newspaper', 'Glassware', 'Basketball', 'Plastic Bottle', 'Cardboard','Glass Bottle', 'Metalware', 'Hats', 'Cans', 'Paper',
            'Vegetable Leaf','Orange Peel', 'Eggshell','Banana Peel',
            'Battery', 'Tablet capsules','Fluorescent lamp', 'Paint bucket']

index_en = {'Seashell': 0, 'Lighter': 1, 'Old Mirror': 2, 'Broom': 3, 'Ceramic Bowl': 4, 'Toothbrush': 5, 'Disposable Chopsticks': 6, 'Dirty Cloth': 7,
            'Newspaper': 8, 'Glassware': 9, 'Basketball': 10, 'Plastic Bottle': 11, 'Cardboard': 12, 'Glass Bottle': 13, 'Metalware': 14, 'Hats': 15, 'Cans': 16, 'Paper': 17,
            'Vegetable Leaf': 18, 'Orange Peel': 19, 'Eggshell': 20, 'Banana Peel': 21,
            'Battery': 22, 'Tablet capsules': 23, 'Fluorescent lamp': 24, 'Paint bucket': 25}

# 训练超参
config = EasyDict({
    "num_classes": 26,
    "image_height": 224,
    "image_width": 224,
    #"data_split": [0.9, 0.1],
    "backbone_out_channels":1280,
    "batch_size": 16,
    "eval_batch_size": 8,
    "epochs": 10,
    "lr_max": 0.05,
    "momentum": 0.9,
    "weight_decay": 1e-4,
    "save_ckpt_epochs": 1,
    "dataset_path": "./data_en",
    "class_index": index_en,
    "pretrained_ckpt": "./mobilenetV2-200_1067.ckpt" # mobilenetV2-200_1067.ckpt 
})

进行数据预处理:

def create_dataset(dataset_path, config, training=True, buffer_size=1000):
    """
    create a train or eval dataset

    Args:
        dataset_path(string): the path of dataset.
        config(struct): the config of train and eval in diffirent platform.

    Returns:
        train_dataset, val_dataset
    """
    data_path = os.path.join(dataset_path, 'train' if training else 'test')
    ds = de.ImageFolderDataset(data_path, num_parallel_workers=4, class_indexing=config.class_index)
    resize_height = config.image_height
    resize_width = config.image_width
    
    normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
    change_swap_op = C.HWC2CHW()
    type_cast_op = C2.TypeCast(mstype.int32)

    if training:
        crop_decode_resize = C.RandomCropDecodeResize(resize_height, scale=(0.08, 1.0), ratio=(0.75, 1.333))
        horizontal_flip_op = C.RandomHorizontalFlip(prob=0.5)
        color_adjust = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
    
        train_trans = [crop_decode_resize, horizontal_flip_op, color_adjust, normalize_op, change_swap_op]
        train_ds = ds.map(input_columns="image", operations=train_trans, num_parallel_workers=4)
        train_ds = train_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=4)
        
        train_ds = train_ds.shuffle(buffer_size=buffer_size)
        ds = train_ds.batch(config.batch_size, drop_remainder=True)
    else:
        decode_op = C.Decode()
        resize_op = C.Resize((int(resize_width/0.875), int(resize_width/0.875)))
        center_crop = C.CenterCrop(resize_width)
        
        eval_trans = [decode_op, resize_op, center_crop, normalize_op, change_swap_op]
        eval_ds = ds.map(input_columns="image", operations=eval_trans, num_parallel_workers=4)
        eval_ds = eval_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=4)
        ds = eval_ds.batch(config.eval_batch_size, drop_remainder=True)

    return ds

MobileNetV2模型搭建

__all__ = ['MobileNetV2', 'MobileNetV2Backbone', 'MobileNetV2Head', 'mobilenet_v2']

def _make_divisible(v, divisor, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

class GlobalAvgPooling(nn.Cell):
    """
    Global avg pooling definition.

    Args:

    Returns:
        Tensor, output tensor.

    Examples:
        >>> GlobalAvgPooling()
    """

    def __init__(self):
        super(GlobalAvgPooling, self).__init__()

    def construct(self, x):
        x = P.mean(x, (2, 3))
        return x

class ConvBNReLU(nn.Cell):
    """
    Convolution/Depthwise fused with Batchnorm and ReLU block definition.

    Args:
        in_planes (int): Input channel.
        out_planes (int): Output channel.
        kernel_size (int): Input kernel size.
        stride (int): Stride size for the first convolutional layer. Default: 1.
        groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.

    Returns:
        Tensor, output tensor.

    Examples:
        >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
    """

    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        super(ConvBNReLU, self).__init__()
        padding = (kernel_size - 1) // 2
        in_channels = in_planes
        out_channels = out_planes
        if groups == 1:
            conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad', padding=padding)
        else:
            out_channels = in_planes
            conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='pad',
                             padding=padding, group=in_channels)

        layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output

class InvertedResidual(nn.Cell):
    """
    Mobilenetv2 residual block definition.

    Args:
        inp (int): Input channel.
        oup (int): Output channel.
        stride (int): Stride size for the first convolutional layer. Default: 1.
        expand_ratio (int): expand ration of input channel

    Returns:
        Tensor, output tensor.

    Examples:
        >>> ResidualBlock(3, 256, 1, 1)
    """

    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            ConvBNReLU(hidden_dim, hidden_dim,
                       stride=stride, groups=hidden_dim),
            nn.Conv2d(hidden_dim, oup, kernel_size=1,
                      stride=1, has_bias=False),
            nn.BatchNorm2d(oup),
        ])
        self.conv = nn.SequentialCell(layers)
        self.cast = P.Cast()

    def construct(self, x):
        identity = x
        x = self.conv(x)
        if self.use_res_connect:
            return P.add(identity, x)
        return x

class MobileNetV2Backbone(nn.Cell):
    """
    MobileNetV2 architecture.

    Args:
        class_num (int): number of classes.
        width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
        has_dropout (bool): Is dropout used. Default is false
        inverted_residual_setting (list): Inverted residual settings. Default is None
        round_nearest (list): Channel round to . Default is 8
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(num_classes=1000)
    """

    def __init__(self, width_mult=1., inverted_residual_setting=None, round_nearest=8,
                 input_channel=32, last_channel=1280):
        super(MobileNetV2Backbone, self).__init__()
        block = InvertedResidual
        # setting of inverted residual blocks
        self.cfgs = inverted_residual_setting
        if inverted_residual_setting is None:
            self.cfgs = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features = [ConvBNReLU(3, input_channel, stride=2)]
        # building inverted residual blocks
        for t, c, n, s in self.cfgs:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t))
                input_channel = output_channel
        features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1))
        self.features = nn.SequentialCell(features)
        self._initialize_weights()

    def construct(self, x):
        x = self.features(x)
        return x

    def _initialize_weights(self):
        """
        Initialize weights.

        Args:

        Returns:
            None.

        Examples:
            >>> _initialize_weights()
        """
        self.init_parameters_data()
        for _, m in self.cells_and_names():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.set_data(Tensor(np.random.normal(0, np.sqrt(2. / n),
                                                          m.weight.data.shape).astype("float32")))
                if m.bias is not None:
                    m.bias.set_data(
                        Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
            elif isinstance(m, nn.BatchNorm2d):
                m.gamma.set_data(
                    Tensor(np.ones(m.gamma.data.shape, dtype="float32")))
                m.beta.set_data(
                    Tensor(np.zeros(m.beta.data.shape, dtype="float32")))

    @property
    def get_features(self):
        return self.features

class MobileNetV2Head(nn.Cell):
    """
    MobileNetV2 architecture.

    Args:
        class_num (int): Number of classes. Default is 1000.
        has_dropout (bool): Is dropout used. Default is false
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(num_classes=1000)
    """

    def __init__(self, input_channel=1280, num_classes=1000, has_dropout=False, activation="None"):
        super(MobileNetV2Head, self).__init__()
        # mobilenet head
        head = ([GlobalAvgPooling(), nn.Dense(input_channel, num_classes, has_bias=True)] if not has_dropout else
                [GlobalAvgPooling(), nn.Dropout(0.2), nn.Dense(input_channel, num_classes, has_bias=True)])
        self.head = nn.SequentialCell(head)
        self.need_activation = True
        if activation == "Sigmoid":
            self.activation = nn.Sigmoid()
        elif activation == "Softmax":
            self.activation = nn.Softmax()
        else:
            self.need_activation = False
        self._initialize_weights()

    def construct(self, x):
        x = self.head(x)
        if self.need_activation:
            x = self.activation(x)
        return x

    def _initialize_weights(self):
        """
        Initialize weights.

        Args:

        Returns:
            None.

        Examples:
            >>> _initialize_weights()
        """
        self.init_parameters_data()
        for _, m in self.cells_and_names():
            if isinstance(m, nn.Dense):
                m.weight.set_data(Tensor(np.random.normal(
                    0, 0.01, m.weight.data.shape).astype("float32")))
                if m.bias is not None:
                    m.bias.set_data(
                        Tensor(np.zeros(m.bias.data.shape, dtype="float32")))
    @property
    def get_head(self):
        return self.head

class MobileNetV2(nn.Cell):
    """
    MobileNetV2 architecture.

    Args:
        class_num (int): number of classes.
        width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
        has_dropout (bool): Is dropout used. Default is false
        inverted_residual_setting (list): Inverted residual settings. Default is None
        round_nearest (list): Channel round to . Default is 8
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(backbone, head)
    """

    def __init__(self, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, \
        round_nearest=8, input_channel=32, last_channel=1280):
        super(MobileNetV2, self).__init__()
        self.backbone = MobileNetV2Backbone(width_mult=width_mult, \
            inverted_residual_setting=inverted_residual_setting, \
            round_nearest=round_nearest, input_channel=input_channel, last_channel=last_channel).get_features
        self.head = MobileNetV2Head(input_channel=self.backbone.out_channel, num_classes=num_classes, \
            has_dropout=has_dropout).get_head

    def construct(self, x):
        x = self.backbone(x)
        x = self.head(x)
        return x

class MobileNetV2Combine(nn.Cell):
    """
    MobileNetV2Combine architecture.

    Args:
        backbone (Cell): the features extract layers.
        head (Cell):  the fully connected layers.
    Returns:
        Tensor, output tensor.

    Examples:
        >>> MobileNetV2(num_classes=1000)
    """

    def __init__(self, backbone, head):
        super(MobileNetV2Combine, self).__init__(auto_prefix=False)
        self.backbone = backbone
        self.head = head

    def construct(self, x):
        x = self.backbone(x)
        x = self.head(x)
        return x

def mobilenet_v2(backbone, head):
    return MobileNetV2Combine(backbone, head)

MobileNetV2模型的训练与测试

训练策略

采用cosine decay下降策略作为模型训练学习率下降策略

def cosine_decay(total_steps, lr_init=0.0, lr_end=0.0, lr_max=0.1, warmup_steps=0):
    """
    Applies cosine decay to generate learning rate array.

    Args:
       total_steps(int): all steps in training.
       lr_init(float): init learning rate.
       lr_end(float): end learning rate
       lr_max(float): max learning rate.
       warmup_steps(int): all steps in warmup epochs.

    Returns:
       list, learning rate array.
    """
    lr_init, lr_end, lr_max = float(lr_init), float(lr_end), float(lr_max)
    decay_steps = total_steps - warmup_steps
    lr_all_steps = []
    inc_per_step = (lr_max - lr_init) / warmup_steps if warmup_steps else 0
    for i in range(total_steps):
        if i < warmup_steps:
            lr = lr_init + inc_per_step * (i + 1)
        else:
            cosine_decay = 0.5 * (1 + math.cos(math.pi * (i - warmup_steps) / decay_steps))
            lr = (lr_max - lr_end) * cosine_decay + lr_end
        lr_all_steps.append(lr)

    return lr_all_steps

加载ImageNet数据上预训练的MobileNetv2进行Fine-tuning,只训练最后修改的FC层,并在训练过程中保存Checkpoint。

def switch_precision(net, data_type):
    if ms.get_context('device_target') == "Ascend":
        net.to_float(data_type)
        for _, cell in net.cells_and_names():
            if isinstance(cell, nn.Dense):
                cell.to_float(ms.float32)

模型训练与测试

在训练MobileNetV2之前对MobileNetV2Backbone层的参数进行了固定,使其在训练过程中对该模块的权重参数不进行更新;只对MobileNetV2Head模块的参数进行更新。

损失函数采用SoftmaxCrossEntropyWithLogits损失函数。

from mindspore.amp import FixedLossScaleManager
import time
LOSS_SCALE = 1024

train_dataset = create_dataset(dataset_path=config.dataset_path, config=config)
eval_dataset = create_dataset(dataset_path=config.dataset_path, config=config)
step_size = train_dataset.get_dataset_size()
    
backbone = MobileNetV2Backbone() #last_channel=config.backbone_out_channels
# Freeze parameters of backbone. You can comment these two lines.
for param in backbone.get_parameters():
    param.requires_grad = False
# load parameters from pretrained model
load_checkpoint(config.pretrained_ckpt, backbone)

head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
network = mobilenet_v2(backbone, head)

# define loss, optimizer, and model
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
loss_scale = FixedLossScaleManager(LOSS_SCALE, drop_overflow_update=False)
lrs = cosine_decay(config.epochs * step_size, lr_max=config.lr_max)
opt = nn.Momentum(network.trainable_params(), lrs, config.momentum, config.weight_decay, loss_scale=LOSS_SCALE)

# 定义用于训练的train_loop函数。
def train_loop(model, dataset, loss_fn, optimizer):
    # 定义正向计算函数
    def forward_fn(data, label):
        logits = model(data)
        loss = loss_fn(logits, label)
        return loss

    # 定义微分函数,使用mindspore.value_and_grad获得微分函数grad_fn,输出loss和梯度。
    # 由于是对模型参数求导,grad_position 配置为None,传入可训练参数。
    grad_fn = ms.value_and_grad(forward_fn, None, optimizer.parameters)

    # 定义 one-step training函数
    def train_step(data, label):
        loss, grads = grad_fn(data, label)
        optimizer(grads)
        return loss

    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 10 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

# 定义用于测试的test_loop函数。
def test_loop(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

print("============== Starting Training ==============")
# 由于时间问题,训练过程只进行了2个epoch ,可以根据需求调整。
epoch_begin_time = time.time()
epochs = 2
for t in range(epochs):
    begin_time = time.time()
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(network, train_dataset, loss, opt)
    ms.save_checkpoint(network, "save_mobilenetV2_model.ckpt")
    end_time = time.time()
    times = end_time - begin_time
    print(f"per epoch time: {times}s")
    test_loop(network, eval_dataset, loss)
epoch_end_time = time.time()
times = epoch_end_time - epoch_begin_time
print(f"total time:  {times}s")
print("============== Training Success ==============")

模型推理

加载模型,使用load_checkpoint接口加载数据时,需要把数据传入给原始网络,而不能传递给带有优化器和损失函数的训练网络。

CKPT="save_mobilenetV2_model.ckpt"

def image_process(image):
    """Precess one image per time.
    
    Args:
        image: shape (H, W, C)
    """
    mean=[0.485*255, 0.456*255, 0.406*255]
    std=[0.229*255, 0.224*255, 0.225*255]
    image = (np.array(image) - mean) / std
    image = image.transpose((2,0,1))
    img_tensor = Tensor(np.array([image], np.float32))
    return img_tensor

def infer_one(network, image_path):
    image = Image.open(image_path).resize((config.image_height, config.image_width))
    logits = network(image_process(image))
    pred = np.argmax(logits.asnumpy(), axis=1)[0]
    print(image_path, class_en[pred])

def infer():
    backbone = MobileNetV2Backbone(last_channel=config.backbone_out_channels)
    head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
    network = mobilenet_v2(backbone, head)
    load_checkpoint(CKPT, network)
    for i in range(91, 100):
        infer_one(network, f'data_en/test/Cardboard/000{i}.jpg')
infer()

导出AIR/GEIR/ONNX模型文件

backbone = MobileNetV2Backbone(last_channel=config.backbone_out_channels)
head = MobileNetV2Head(input_channel=backbone.out_channels, num_classes=config.num_classes)
network = mobilenet_v2(backbone, head)
load_checkpoint(CKPT, network)

input = np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32)
# export(network, Tensor(input), file_name='mobilenetv2.air', file_format='AIR')
# export(network, Tensor(input), file_name='mobilenetv2.pb', file_format='GEIR')
export(network, Tensor(input), file_name='mobilenetv2.onnx', file_format='ONNX')

总结

MovileNetV2网络使用深度可分离卷积的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量,同时还突出使用倒残差结构和Linear Bottlenecks来设计网络,以提高模型准确率并使优化后的模型更小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1883375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【面试题】IPS(入侵防御系统)和IDS(入侵检测系统)的区别

IPS&#xff08;入侵防御系统&#xff09;和IDS&#xff08;入侵检测系统&#xff09;在网络安全领域扮演着不同的角色&#xff0c;它们之间的主要区别可以归纳如下&#xff1a; 功能差异&#xff1a; IPS&#xff1a;这是一种主动防护设备&#xff0c;不仅具备检测攻击的能力&…

利用pyecharts制作2023全国GDP分布图

完整代码&#xff1a; from pyecharts import options as opts from pyecharts.charts import Map import pandas as pddf pd.read_excel(各省份GDP.xlsx) # print(df.head())year 2023 info df[[省份,year]] # print(info)info_list info.values.tolist() print(info_lis…

YTM32的HA系列微控制器启动过程详解

YTM32的HA系列微控制器启动过程详解 文章目录 YTM32的HA系列微控制器启动过程详解IntroductionPricinple & MachenismHA01的内存地址空间BOOT ROM简介安全启动Security Boot快速从Powerdown模式下唤醒对内核进行例行自检&#xff08;Structural Core Self-Test&#xff0c;…

Python容器 之 字符串--下标和切片

1.下标&#xff08;索引&#xff09; 一次获取容器中的一个数据 1, 下标(索引), 是数据在容器(字符串, 列表, 元组)中的位置, 编号 2, 一般来说,使用的是正数下标, 从 0 开始 3, 作用: 可以通过下标来获取具体位置的数据. 4, 语法&#xff1a; 容器[下标] 5, Python 中是支持…

SuperMap GIS基础产品FAQ集锦(20240701)

一、SuperMap iDesktopX 问题1&#xff1a;对于数据提供方提供的osgb格式的数据&#xff0c;如何只让他生成一个s3mb文件呢&#xff1f;我用倾斜入库的方式会生成好多个s3mb缓存文件 11.1.1 【解决办法】不能控制入库后只生成一个s3mb文件&#xff1b;可以在倾斜入库的时候设…

基于Java实现图像浏览器的设计与实现

图像浏览器的设计与实现 前言一、需求分析选题意义应用意义功能需求关键技术系统用例图设计JPG系统用例图图片查看系统用例图 二、概要设计JPG.javaPicture.java 三、详细设计类图JPG.java UML类图picture.java UML类图 界面设计JPG.javapicture.java 四、源代码JPG.javapictur…

Leetcode.1735 生成乘积数组的方案数

题目链接 Leetcode.1735 生成乘积数组的方案数 rating : 2500 题目描述 给你一个二维整数数组 q u e r i e s queries queries &#xff0c;其中 q u e r i e s [ i ] [ n i , k i ] queries[i] [n_i, k_i] queries[i][ni​,ki​] 。第 i i i 个查询 q u e r i e s [ i …

Esxi硬件日志告警

原创作者&#xff1a;运维工程师 谢晋 Esxi硬件日志告警 故障描述故障处理 故障描述 主机报错硬件对象状态告警 在Esxi监控硬件内发现Systemctl Manager Module 1 Event log 0报警&#xff0c;该报警是Esxi事件日志保存空间满了&#xff0c;需要清理空间。 故障处理 开启…

整除分块的题目

链接 思路&#xff1a; 求1到n中的因数个数和等价于求,设x为因子&#xff0c;就是求x在1到n里出现了几次&#xff0c;求1到n里是x的倍数的数有几个&#xff0c;即n/x。需要用整除分块&#xff0c;n/i的值是分块分部的&#xff0c;右端点是n/&#xff08;n/i&#xff09;。 代…

相机网线RJ45连接器双端带线5米8芯绿色网线注塑成型

相机网线RJ45连接器双端带线5米8芯绿色网线注塑成型&#xff0c;这款网线采用了环保的绿色材质&#xff0c;线长5米&#xff0c;足够满足大多数拍摄场景的需求。更重要的是&#xff0c;它采用了8芯设计&#xff0c;保证了数据传输的稳定性和高速性。在接口方面&#xff0c;它采…

转转回收的持久层架构演进

1 前言 我们在大部分开发场景下&#xff0c;对持久层的建设基于单库单表其实就可以实现当前的产品需求。但是随着业务发展越来越久&#xff0c;数据量、请求量也在不断的增加&#xff0c;只是单库单表可能不足以支撑系统的稳定运行&#xff0c;本文主要给大家分享一下笔者在项…

mac安装达梦数据库

参考&#xff1a;mac安装达梦数据库​​​​​​ 实践如下&#xff1a; 1、下载达梦Docker镜像文件 同参考链接 2、导入镜像 镜像可以随便放在某个目录&#xff0c;相当于安装包&#xff0c;导入后就没有作用了。 查找达梦镜像名称&#xff1a;dm8_20240613_rev229704_x86…

EHS管理系统避坑指南!这几个关键点需要注意!

在企业管理中&#xff0c;环境、健康和安全&#xff08;EHS&#xff09;占据着举足轻重的地位&#xff0c;而EHS管理系统则是推动EHS管理走向高效与规范的核心工具。因此&#xff0c;选择一个与企业需求相契合的EHS管理系统&#xff0c;对于维护员工健康、保护环境安全以及提升…

C#——Property属性详情

属性 属性&#xff08;Property&#xff09;是类&#xff08;class&#xff09;、结构体&#xff08;structure&#xff09;和接口&#xff08;interface&#xff09;的成员&#xff0c;类或结构体中的成员变量称为字段&#xff0c;属性是字段的扩展&#xff0c;使用访问器&am…

算法实验2.2、2.3

2.2主要内容 比较快速排序&#xff0c;归并排序以及堆排序算法的时间效率。了解影响算法执行时间的 主要因素以及如何降低算法的执行时间。 #include<iostream> using namespace std; #include<stdio.h> #include<malloc.h> #include<stdlib.h> #inc…

Gradle学习-4 创建二进制插件工程

二进制插件工程创建有两种方式&#xff1a; 创建独立的工程&#xff0c;调试的时候&#xff0c;需要手动发布成一个二进制插件jar包&#xff0c;给其他工程里面引用&#xff0c;进行功能测试。这种方式是比较麻烦的。创建buildSrc子工程&#xff0c;它是一个大工程中的子工程&…

C语言之线程的学习

线程属于某一个进程 共同点&#xff1a;都能并发 线程共享变量&#xff0c;进程不共享。 多线程任务中&#xff0c;其中某一个线程调用了exit了&#xff0c;其他线程会跟着一起退出 如果是特定的线程就调用pthread_exit 失败返回的是错误号 下面也是

基于JSP技术的校园餐厅管理系统

开头语&#xff1a; 你好呀&#xff0c;我是计算机学长猫哥&#xff01;如果您对校园餐厅管理系统感兴趣或有相关需求&#xff0c;欢迎随时联系我。我的联系方式在文末&#xff0c;期待与您交流&#xff01; 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#x…

Redis 中的通用命令(命令的返回值、复杂度、注意事项及操作演示)

Redis 中的通用命令(高频率操作) 文章目录 Redis 中的通用命令(高频率操作)Redis 的数据类型redis-cli 命令Keys 命令Exists 命令Expire 命令Ttl 命令Type命令 Redis 的数据类型 Redis 支持多种数据类型&#xff0c;整体来说&#xff0c;Redis 是一个键值对结构的&#xff0c;…

深入解析 androidx.databinding.Bindable 注解

在现代 Android 开发中&#xff0c;数据绑定 (Data Binding) 是一个非常重要的技术。它使得我们能够简化 UI 和业务逻辑之间的连接&#xff0c;从而提高代码的可读性和维护性。在数据绑定中&#xff0c;Bindable 注解是一个关键部分&#xff0c;它帮助我们实现双向数据绑定和自…