1. 微服务保护
1.1 服务保护方案
1.1.1 请求限流
服务故障最重要原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制或控制接口访问的并发流量,避免服务因流量激增而出现故障。
请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。
1.1.2 线程隔离
当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口受到影响。所以我们必须把这种影响降低,或者缩减影响的范围。线程隔离正是解决这个问题的好办法。
为了避免某个接口故障或压力过大导致整个服务不可用,我们可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来。
如图所示,给查询购物车业务限定可用线程数量上限为20,这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口。
1.1.3 服务熔断
线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用了。
所以,要做两件事情:
-
编写服务降级逻辑:就是服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据。
-
异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。
1.2 Sentinel
安装sentinel jar包后,在该目录下cmd使用命令启动控制台
D:\JavaCatalog\itheima>java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.6.jar
访问http://localhost:8090页面,可以看到sentinel的控制台,用户和密码均为sentinel。
1.2.1 微服务整合
按照文档,在cart-service
模块中整合sentinel,连接sentinel-dashboard
控制台。
重启cart-service
,然后访问查询购物车接口,sentinel的客户端就会将服务访问的信息提交到sentinel-dashboard
控制台。并展示出统计信息。见文档吧,想发疯! 连不上sentinel!谁能救救我,电脑还卡的很!真的会憋死!
1.3 请求限流
sentinel控制台界面,在簇点链路后面点击流控按钮,即可对其做限流配置(设置QPS/每秒查询数)。
1.4 线程隔离
限流可以降低服务器压力,尽量减少因并发流量引起的服务故障的概率,但并不能完全避免服务故障。一旦某个服务出现故障,我们必须隔离对这个服务的调用,避免发生雪崩。
1.4.1.OpenFeign整合Sentinel
见文档
sentinel控制台界面,在簇点链路后面点击流控按钮,即可对其做并发线程数的配置。如果并发线程数限制为5,也就是说这个查询功能最多使用5个线程,而不是5QPS。如果查询商品的接口每秒处理2个请求,则5个线程的实际QPS在10左右,而超出的请求自然会被拒绝。
1.5 服务熔断
在述过程中,利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(模拟了500毫秒延时),再加上线程隔离限定了线程数为5,导致接口吞吐能力有限,最终QPS只有10左右。这就导致了几个问题:
第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑。
第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。
1.5.1 编写降级逻辑
触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好。
给FeignClient编写失败后的降级逻辑有两种方式:
-
方式一:FallbackClass,无法对远程调用的异常做处理
-
方式二:FallbackFactory,可以对远程调用的异常做处理,一般选择这种方式。
见文档。
1.5.2 服务熔断
查询商品的RT较高(模拟的500ms),从而导致查询购物车的RT(Response time 响应时间)也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。
对于商品服务这种不太健康的接口,应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了。
Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求。
断路器的工作状态切换有一个状态机来控制:
状态机包括三个状态:
-
closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
-
open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态持续一段时间后会进入half-open状态
-
half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
-
请求成功:则切换到closed状态
-
请求失败:则切换到open状态
-
可以在控制台通过点击簇点后的熔断
按钮来配置熔断策略。
2. 分布式事务
由于订单、购物车、商品分别在三个不同的微服务,而每个微服务都有自己独立的数据库,因此下单过程中就会跨多个数据库完成业务。而每个微服务都会执行自己的本地事务:
-
交易服务:下单事务
-
购物车服务:清理购物车事务
-
库存服务:扣减库存事务
整个业务中,各个本地事务是有关联的。因此每个微服务的本地事务,也可以称为分支事务。多个有关联的分支事务一起就组成了全局事务。必须保证整个全局事务同时成功或失败。
对于全局事务并未遵循ACID的原则,归其原因就是参与事务的多个子业务在不同的微服务,跨越了不同的数据库。虽然每个单独的业务都能在本地遵循ACID,但是它们互相之间没有感知,不知道有人失败了,无法保证最终结果的统一,也就无法遵循ACID的事务特性了。
这就是分布式事务问题,出现以下情况之一就可能产生分布式事务问题:
-
业务跨多个服务实现
-
业务跨多个数据源实现
2.1 Seata
解决分布式事务,找到一个统一的事务协调者,与多个分支事务通信,检测每个分支事务的执行状态,保证全局事务下的每一个分支事务同时成功或失败即可。大多数的分布式事务框架都是基于这个理论来实现的。
Seata也不例外,在Seata的事务管理中有三个重要的角色:
-
TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
-
TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
-
RM (Resource Manager) - 资源管理器:管理分支事务,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
Seata的工作框架如图所示:
其中,TM和RM可以理解为Seata的客户端部分,引入到参与事务的微服务依赖中即可。将来TM和RM就会协助微服务,实现本地分支事务与TC之间交互,实现事务的提交或回滚。
而TC服务则是事务协调中心,是一个独立的微服务,需要单独部署。
2.2 部署TC服务
见文档。
2.3 微服务集成Seata
见文档。