昇思25天学习打卡营第10天 | 基于MindNLP+MusicGen生成自己的个性化音乐

news2025/1/21 0:49:37

基于MindNLP+MusicGen生成自己的个性化音乐

MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《Simple and Controllable Music Generation》。

MusicGen模型基于Transformer结构,可以分解为三个不同的阶段:

  1. 用户输入的文本描述作为输入传递给一个固定的文本编码器模型,以获得一系列隐形状态表示。
  2. 训练MusicGen解码器来预测离散的隐形状态音频token。
  3. 对这些音频token使用音频压缩模型(如EnCodec)进行解码,以恢复音频波形。

MusicGen直接使用谷歌的t5-base及其权重作为文本编码器模型,并使用EnCodec 32kHz及其权重作为音频压缩模型。MusicGen解码器是一个语言模型架构,针对音乐生成任务从零开始进行训练。

MusicGen 模型的新颖之处在于音频代码的预测方式。传统上,每个码本都必须由一个单独的模型(即分层)或通过不断优化 Transformer 模型的输出(即上采样)进行预测。与传统方法不同,MusicGen采用单个stage的Transformer LM结合高效的token交织模式,取消了多层级的多个模型结构,例如分层或上采样,这使得MusicGen能够生成单声道和立体声的高质量音乐样本,同时提供更好的生成输出控制。MusicGen不仅能够生成符合文本描述的音乐,还能够通过旋律条件控制生成的音调结构。

在这里插入图片描述

Figure 1: MusicGen使用的码本延迟模式,来源于 MusicGen paper.

下载模型

MusicGen提供了small、medium和big三种规格的预训练权重文件,本次指南默认使用small规格的权重,生成的音频质量较低,但是生成的速度是最快的:

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
%%capture captured_output
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1 jieba soundfile librosa`
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindnlp jieba soundfile librosa
# 查看当前 mindspore 版本
!pip show mindspore
Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: mindnlp
from mindnlp.transformers import MusicgenForConditionalGeneration

model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 1.024 seconds.
Prefix dict has been built successfully.



  0%|          | 0.00/1.55k [00:00<?, ?B/s]



  0%|          | 0.00/2.20G [00:00<?, ?B/s]


Failed to download: ("Connection broken: ConnectionResetError(104, 'Connection reset by peer')", ConnectionResetError(104, 'Connection reset by peer'))
Retrying... (attempt 0/5)



  9%|9         | 203M/2.20G [00:00<?, ?B/s]


\


  0%|          | 0.00/224 [00:00<?, ?B/s]

生成音乐

MusicGen支持两种生成模式:贪心(greedy)和采样(sampling)。在实际执行过程中,采样模式得到的结果要显著优于贪心模式。因此我们默认启用采样模式,并且可以在调用MusicgenForConditionalGeneration.generate时设置do_sample=True来显式指定使用采样模式。

无提示生成

我们可以通过方法 MusicgenForConditionalGeneration.get_unconditional_inputs 获得网络的随机输入,然后使用 .generate 方法进行自回归生成,指定 do_sample=True 来启用采样模式:

%%time
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)

audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256)
CPU times: user 6min 25s, sys: 1min 15s, total: 7min 40s
Wall time: 9min 34s

音频输出是格式是: a Torch tensor of shape (batch_size, num_channels, sequence_length)

使用第三方库scipy将输出的音频保存为musicgen_out.wav 文件。

import scipy

sampling_rate = model.config.audio_encoder.sampling_rate
scipy.io.wavfile.write("musicgen_out.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
from IPython.display import Audio
# 要收听生成的音频样本,可以使用 Audio 在 notebook 进行播放
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

参数 max_new_tokens 指定要生成 token 数。根据经验,可以使用 EnCodec 模型的帧速率计算出生成的音频样本的长度(以秒为单位):

audio_length_in_s = 256 / model.config.audio_encoder.frame_rate

audio_length_in_s
5.12

文本提示生成

首先基于文本提示,通过AutoProcessor对输入进行预处理。然后将预处理后的输入传递给 .generate 方法以生成文本条件音频样本。同样,我们通过设置“do_sample=True”来启用采样模式。

其中,guidance_scale 用于无分类器指导(CFG),设置条件对数之间的权重(从文本提示中预测)和无条件对数(从无条件或空文本中预测)。guidance_scale越高表示生成的模型与输入的文本更加紧密。通过设置guidance_scale > 1来启用 CFG。为获得最佳效果,使用guidance_scale=3(默认值)生成文本提示音频。

%%time
from mindnlp.transformers import AutoProcessor

processor = AutoProcessor.from_pretrained("facebook/musicgen-small")

inputs = processor(
    text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
    padding=True,
    return_tensors="ms",
)

audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
  0%|          | 0.00/433 [00:00<?, ?B/s]



  0%|          | 0.00/773k [00:00<?, ?B/s]



0.00B [00:00, ?B/s]



  0%|          | 0.00/335 [00:00<?, ?B/s]


CPU times: user 6min 23s, sys: 1min 11s, total: 7min 35s
Wall time: 10min 16s
scipy.io.wavfile.write("musicgen_out_text.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
from IPython.display import Audio
# 要收听生成的音频样本,可以使用 Audio 在 notebook 进行播放
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

音频提示生成

AutoProcessor同样可以对用于音频预测的音频提示进行预处理。在以下示例中,我们首先加载音频文件,然后进行预处理,并将输入给到网络模型来进行音频生成。最后,我们将生成出来的音频文件保存为musicgen_out_audio.wav

%%time
from datasets import load_dataset

processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True)
sample = next(iter(dataset))["audio"]

# take the first half of the audio sample
sample["array"] = sample["array"][: len(sample["array"]) // 2]

inputs = processor(
    audio=sample["array"],
    sampling_rate=sample["sampling_rate"],
    text=["80s blues track with groovy saxophone"],
    padding=True,
    return_tensors="ms",
)

audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)
  0%|          | 0.00/275 [00:00<?, ?B/s]



Downloading readme:   0%|          | 0.00/400 [00:00<?, ?B/s]


'HTTPSConnectionPool(host='cdn-lfs.hf-mirror.com', port=443): Read timed out.' thrown while requesting GET https://hf-mirror.com/datasets/sanchit-gandhi/gtzan/resolve/4bd857132cb0e731bef3ec68558e7acc0a85f144/data/train-00000-of-00003-abaaa5719027ce5c.parquet
Retrying in 1s [Retry 1/5].


CPU times: user 6min 37s, sys: 1min 10s, total: 7min 48s
Wall time: 11min 36s
scipy.io.wavfile.write("musicgen_out_audio.wav", rate=sampling_rate, data=audio_values[0, 0].asnumpy())
from IPython.display import Audio
# 要收听生成的音频样本,可以使用 Audio 在 notebook 进行播放
Audio(audio_values[0].asnumpy(), rate=sampling_rate)

为了演示批量音频提示生成,我们将按两个不同的比例对样本音频进行切片,以提供两个不同长度的音频样本。由于输入音频提示的长度各不相同,因此在传递到模型之前,它们将被填充到批处理中最长的音频样本的长度。

要恢复最终音频样本,可以对生成的audio_values进行后处理,以再次使用处理器类删除填充:

sample = next(iter(dataset))["audio"]

# take the first quater of the audio sample
sample_1 = sample["array"][: len(sample["array"]) // 4]

# take the first half of the audio sample
sample_2 = sample["array"][: len(sample["array"]) // 2]

inputs = processor(
    audio=[sample_1, sample_2],
    sampling_rate=sample["sampling_rate"],
    text=["80s blues track with groovy saxophone", "90s rock song with loud guitars and heavy drums"],
    padding=True,
    return_tensors="ms",
)

audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256)

# post-process to remove padding from the batched audio
audio_values = processor.batch_decode(audio_values, padding_mask=inputs.padding_mask)
-
Audio(audio_values[0], rate=sampling_rate)

生成配置

控制生成过程的默认参数(例如采样、指导比例和生成的令牌数量)可以在模型的生成配置中找到,并根据需要进行更新。首先,我们检查默认的生成配置:

print('guidance_scale:\t'+str(model.generation_config.guidance_scale))
print('max_new_tokens:\t'+str(model.generation_config.max_new_tokens))
print('temperature:\t'+str(model.generation_config.temperature))
# 更多参数见
# https://gitee.com/mindspore-lab/mindnlp
# mindnlp/mindnlp/transformers/generation/configuration_utils.py
guidance_scale:	4.0
max_new_tokens:	256
temperature:	1.5

我们看到模型默认使用采样模式 (do_sample=True),指导刻度为 3,最大生成长度为 1500(相当于 30 秒的音频)。你可以更新以下任一属性以更改默认生成参数:

# increase the guidance scale to 4.0
model.generation_config.guidance_scale = 4.0

# set the max new tokens to 256
model.generation_config.max_new_tokens = 256

# set the softmax sampling temperature to 1.5
model.generation_config.temperature = 1.5

现在重新运行生成将使用生成配置中新定义的值

audio_values = model.generate(**inputs)

请注意,传递给 generate 方法的任何参数都将取代生成配置中的参数,因此在调用 generate 中设置 do_sample=False 将取代生成配置中 model.generation_config.do_sample 的设置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1880639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Keepalive技术

文章目录 一、Keepalive基础vrrp技术Keepalived介绍Keepalived架构 二、 Keepalived 相关文件配置文件组成全局配置虚拟路由器配置 三、配置lvs和keepalive联动服务器架构抢占模式配置配置单播、组播配置通知模块日志功能脑裂现象 四、keepalived和nginx联动keepalive和其他应用…

html文章卡片

完成效果 中医网站的文本卡片制作&#xff0c;其中用到了grid布局 css基础知识回顾 阴影样式 好的阴影样式可以保存 box-shadow: 6px 6px 5px hsla(0, 0%, 0%, 0.02), 25px 25px 20px hsla(0, 0%, 0%, 0.03), 100px 100px 80px hsla(0, 0%, 0%, 0.05); grid-template-column…

Python的numpy简单使用

1.可以调用引入numpy里面的函数&#xff0c;如add可以把俩数相加&#xff0c;也可以创建一个数组arr&#xff0c;arr.shape是数组arr的属性&#xff0c;如果后有跟&#xff08;&#xff09;就是里面的一个函数 type()函数可以知道里面是什么类型 变量.shape可以知道这个变量是…

这些并发编程技术你都知道吗?

与其碌碌无为&#xff0c;不如兴风作浪。 虽然不是所有的系统都需要很多的并发编程技术&#xff0c;但是掌握常见的高并发秘籍&#xff0c;便能让我们的系统快起来&#xff0c;面对访问量的剧增从容应对。 接下来&#xff0c;为我们一起来看看常见的高并发技术有哪些。总结起来…

NAS教程丨铁威马如何登录 SSH终端?

适用型号&#xff1a; 所有TNAS 型号 如您有特殊操作需要通过 SSH 终端登录 TNAS&#xff0c;请参照以下指引&#xff1a; (注意: 关于以下操作步骤中的"cd /"的指令,其作用是使当前 SSH/Telnet 连接的位置切换到根目录,以免造成对卷的占用.请不要遗漏它.) Windows…

Django 对模型创建的两表插入数据

1&#xff0c;添加模型 Test/app8/models.py from django.db import modelsclass User(models.Model):username models.CharField(max_length50, uniqueTrue)email models.EmailField(uniqueTrue)password models.CharField(max_length128) # 使用哈希存储密码first_name …

Excel 数据筛选难题解决

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

leetCode.98. 验证二叉搜索树

leetCode.98. 验证二叉搜索树 题目描述 代码 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(n…

Spring 动态增强逻辑执行分析

1、假如UserService中存在被增强的public 普通方法&#xff0c;那么spring ioc时就会创建对应的代理对象放置到容器中&#xff1b; 2、那么Controller中注入的userService就是代理对象&#xff1b; Service public class UserService {Transactionalpublic void f2(String us…

理解GPT2:无监督学习的多任务语言模型

目录 一、背景与动机 二、卖点与创新 三、几个问题 四、具体是如何做的 1、更多、优质的数据&#xff0c;更大的模型 2、大数据量&#xff0c;大模型使得zero-shot成为可能 3、使用prompt做下游任务 五、一些资料 一、背景与动机 基于 Transformer 解码器的 GPT-1 证明…

WDG看门狗

1 WDG 1.1 简介 WDG是看门狗定时器&#xff08;Watchdog Timer&#xff09;的缩写&#xff0c;它是一种用于计算机和嵌入式系统中的定时器&#xff0c;用来检测和恢复系统故障。 看门狗就像是一个忠诚的宠物狗&#xff0c;它时刻盯着你的程序&#xff0c;确保它们正常运行。…

WordPress中文网址导航栏主题风格模版HaoWa

模板介绍 WordPress响应式网站中文网址导航栏主题风格模版HaoWa1.3.1源码 HaoWA主题风格除行为主体导航栏目录外&#xff0c;对主题风格需要的小控制模块都开展了敞开式的HTML在线编辑器方式的作用配备&#xff0c;另外预埋出默认设置的编码构造&#xff0c;便捷大伙儿在目前…

python解锁图片相似度的神奇力量

在这个信息爆炸的时代,图片成为了我们传递信息、表达情感和记录生活的重要方式。然而,面对海量的图片资源,如何快速准确地找到相似的图片,成为了一个亟待解决的问题。现在,让我们为您揭开图片相似度的神秘面纱,带您领略这一创新技术的魅力! 图片相似度技术,就像是一位…

一文弄懂DBSCAN聚类算法

1.引言 今天&#xff0c;我们将讨论另一种聚类算法 DBSCAN&#xff08;基于密度的带噪声应用空间聚类&#xff09;。为了更好地理解 DBSCAN&#xff0c;请先阅读之前介绍的 K-Means 和 分层聚类这两篇文章。 顾名思义&#xff0c;DBSCAN 是通过点的密度来识别聚类集群。聚类通…

AI写作变现指南:从项目启动到精通

项目启动 1. 确定目标客户群体 首先&#xff0c;明确谁是我们的目标客户。以下是一些潜在的客户群体&#xff1a; 大学生&#xff1a;他们需要写论文、报告、演讲稿等。 职场人士&#xff1a;包括需要撰写商业计划书、市场分析报告、项目提案等的专业人士。 自媒体从业者&…

《昇思25天学习打卡营第14天 | 昇思MindSpore基于MindNLP+MusicGen生成自己的个性化音乐》

14天 本节学了基于MindNLPMusicGen生成自己的个性化音乐。 MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型的音乐生成模型&#xff0c;能够根据文本描述或音频提示生成高质量的音乐样本。 MusicGen模型基于Transformer结构&#xff0c;可以分解为三个不同的阶段…

基于STM32的智能农业环境监控系统

目录 引言环境准备智能农业环境监控系统基础代码实现&#xff1a;实现智能农业环境监控系统 4.1 数据采集模块4.2 数据处理与分析4.3 控制系统实现4.4 用户界面与数据可视化应用场景&#xff1a;农业环境管理与优化问题解决方案与优化收尾与总结 1. 引言 智能农业环境监控系…

java基础知识点全集

JAVA的所有知识点 一、基础的数组、数据类型、输入输出二、类与对象1. 三大特征&#xff08;1&#xff09; 封装&#xff08;2&#xff09;继承&#xff08;3&#xff09;多态 2. 类的实例化&#xff08;1&#xff09; 类通过NEW来创建&#xff08;2&#xff09; 类的继承&…

Vue3学习(一)

创建组件实例&#xff1a;我们传入 createApp 的对象实际上是一个组件 import { createApp } from vue // 从一个单文件组件中导入根组件 import App from ./App.vueconst app createApp(App) 大多数真实的应用都是由一棵嵌套的、可重用的组件树组成的。 App (root compone…

贪心算法题目总结

1. 整数替换 看到这道题目&#xff0c;我们首先能想到的方法就应该是递归解法&#xff0c;我们来画个图 此时我们出现了重复的子问题&#xff0c;就可以使用递归&#xff0c;只要我们遇到偶数&#xff0c;直接将n除以2递归下去&#xff0c;如果是奇数&#xff0c;选出加1和减1中…