【旭日x3派】部署官方yolov5全流程

news2024/11/24 11:37:57

地平线旭日x3派部署yolov5--全流程

    • 前言
    • 一、深度学习环境安装
    • 二、安装docker
    • 三、部署
      • 3.1、安装工具链镜像
      • 3.2、配置天工开物OpenExplorer工具包
      • 3.3、创建深度学习虚拟空间,安装依赖:
      • 3.4、下载yolov5项目源码并运行
      • 3.5、pytorch的pt模型文件转onnx
      • 3.6、最重要且最难的部分:ONNX模型转换成bin模型
    • 四、上板运行

前言

原文参考:https://blog.csdn.net/Zhaoxi_Li/article/details/125516265
https://blog.csdn.net/Zhaoxi_Li/article/details/126651890?spm=1001.2014.3001.5502

这次部署的过程在windows下进行,深度学习环境和docker都是安装在windows中。
系统:win10
gpu:NVIDIA GeForce GTX 1650
在这里插入图片描述
简单来说就是一块性能拉跨点的笔记本电脑,可以直接插入鼠标、键盘、显示屏,当作电脑使用。这使得可以部署深度学习算法到这块板子上。

一、深度学习环境安装

如果只是想体验一下部署,不使用自己的模型的话,其实深度学习的环境都不用安装。
1、安装anaconda
anaconda的介绍看这篇:https://blog.csdn.net/weixin_56197703/article/details/124630222
下载一般两个选择,一个是官网,另一个是国内镜像网站。
①官网下载:直接下载最新就好了
在这里插入图片描述
②镜像网站下载:可以下载下面圈起来的其中之一
在这里插入图片描述

安装过程: 建议直接安装c盘,避免不必要的错误,前提是c盘名称是英文。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面这里,第一个选项意思就是将安装路径填入到系统环境变量中,这里勾选,后面使用着可能会出现问题,如果这里不勾选的话,就要自己区设置环境变量。
在这里插入图片描述
如果前面这个没勾选的话就进行环境变量设置:
此电脑----->属性----->高级系统设置----->环境变量----->path----->编辑----->新建。
在这里插入图片描述
将如下指令添加到环境变量:这里要根据自己的安装位置进行更改。

E:\Anaconda 
E:\Anaconda\Scripts 
E:\Anaconda\Library\mingw-w64\bin
E:\Anaconda\Library\usr\bin 
E:\Anaconda\Library\bin

在这里插入图片描述
配置完成之后测试安装是否成功:
搜索cmd或者win+r键入cmd:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果报错大概率是环境变量问题,认真弄。

2、安装cuda与cudnn
①查看显卡支持的最高CUDA的版本,以便下载对应的CUDA安装包:
win+R输入cmd进入命令提示符,输入:nvidia-smi
在这里插入图片描述
我这里在未安装之前显示的是11.6,表示最高支持11.6,不是只能下载11.6。由于电脑比较拉跨,这里选择10.2版本,在NVIDIA官方网站即可下载,地址为:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
安装包下载完成之后先安装第一个最大的哪个:基本就是一路向下,问你啥都勾选。
在这里插入图片描述
再安装两个比较小的补丁,这个补丁直接精简安装就行。

②确定CUDA版本对应的cuDNN版本并安装:
cudnn下载地址:https://developer.nvidia.com/rdp/cudnn-archive (需要注册NV账号),这里面直接写着有对应版本,我这里cuda10.2对应的有挺多版本,任选一个:
在这里插入图片描述
③安装pytorch
首先看pytorch与cuda的对应版本关系:
在这里插入图片描述
GPU版本的pytorch建议离线安装,安装包地址:https://download.pytorch.org/whl/torch_stable.html。
找到对应的cuda版本,python版本,系统版本进行安装,我这里安装anaconda时python版本是3.7,cuda是10.2,Pytorch版本选择1.9.0,所以最终下载的安装包是:
在这里插入图片描述
其中cu代表了cuda版本,cp代表了python版本,torch代表要安装的pytorch版本。
安装过程直接参考b站视频:https://www.bilibili.com/video/BV1Cr4y1u76N/?p=6&spm_id_from=333.1007.top_right_bar_window_history.content.click&vd_source=2a10d30b8351190ea06d85c5d0bfcb2a。
后续的torchvision和pycharm的安装都直接看视频来的快。

二、安装docker

进入Docker Desktop下载桌面版的docker
在这里插入图片描述
下载完成之后双击打开安装包进行安装,安装完成之后双击打开,如果此时报错:Docker Desktop is unable to detect a Hypervisor
解决:进入控制面板->程序->启用或关闭windows功能->勾选Hyper-V,此时应该会自动重启电脑,如果没有的话手动重启。
此时再次双击打开docker,如果报另一个错,类似下面这样的:
在这里插入图片描述
解决:以管理员权限打开powershell,输入wsl --update更新wsl,此时应该就可以了。
打开docker之后,界面应该如下:
在这里插入图片描述

三、部署

3.1、安装工具链镜像

从地平线天工开物cpu docker hub获取部署所需要的CentOS Docker镜像。使用最新的镜像v1.13.6(实测需要梯子才能进这个网站)
在这里插入图片描述
以管理员模式运行CMD,输入docker,可以显示出docker的帮助信息:
在这里插入图片描述
在cmd中输入命令docker pull openexplorer/ai_toolchain_centos_7:v1.13.6,之后会自动开始镜像的安装。安装成功之后,即可在docker中看到成功安装的工具链镜像:
在这里插入图片描述

3.2、配置天工开物OpenExplorer工具包

OpenExplorer工具包的下载,需要wget支持,wget的下载链接为:https://eternallybored.org/misc/wget/。下载x64对应的压缩包。
在这里插入图片描述
下载完成解压之后如下图:
在这里插入图片描述
然后将wget.exe复制到C:\Windows\System32下:
在这里插入图片描述
这样就可以了。然后win+R→cmd,输入wget,出现如下的界面说明安装成功:
在这里插入图片描述
安装好之后即可在cmd中通过如下命令下载OpenExplorer工具包:也可以自己选择其他版本(https://developer.horizon.ai/forumDetail/136488103547258769)

wget -c ftp://vrftp.horizon.ai/Open_Explorer_gcc_9.3.0/2.2.3/horizon_xj3_open_explorer_v2.2.3a_20220701.tar.gz

3.3、创建深度学习虚拟空间,安装依赖:

①创建虚拟环境:
打开anaconda prompt,创建虚拟环境
在这里插入图片描述
在这里插入图片描述
创建完成之后进入虚拟环境:conda activate test
②安装ONNX:
由于需要将Pytorch模型是可以转为ONNX模型,所以需要这一步

# 安装关键包ONNX
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple onnx

③安装yolov5需要的一些包:
安装之前最好去搜一搜版本对应关系,这里是python3.7,如果版本不兼容后面会报错。

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib>=3.2.2 numpy>=1.18.5 opencv-python>=4.1.1 Pillow>=7.1.2 PyYAML>=5.3.1 requests>=2.23.0 scipy>=1.4.1 tqdm>=4.64.0 tensorboard>=2.4.1 pandas>=1.1.4 seaborn>=0.11.0 ipython psutil thop>=0.1.1

3.4、下载yolov5项目源码并运行

本篇博客大部分参考https://blog.csdn.net/Zhaoxi_Li/article/details/126651890?spm=1001.2014.3001.5502,使用的也是他分享的源码,直接进百度网盘下载项目:https://pan.baidu.com/share/init?surl=K4WhC9vaA7p__uWS-ovn8A,提取码:0A09。
在这里插入图片描述
流程如下,可以看到对应目录和操作,需要进入虚拟空间:
在这里插入图片描述
这样测试成功之后环境大概率没问题,可以进行后续,本篇不自己训练模型,直接使用原始模型进行部署。

3.5、pytorch的pt模型文件转onnx

旭日x3派当前BPU支持onnx的opset版本为11,不用这个版本就会报错:
注意所在目录,需要在yolov5-master下。

python .\export.py --weights .\models\yolov5s.pt --include onnx --opset 11

在这里插入图片描述

3.6、最重要且最难的部分:ONNX模型转换成bin模型

1、启动docker,将需要用到的文件夹挂载到docker中:
在进入docker之前,先确定几个内容:
******天工开物OpenExplorer根目录:我的环境下是"G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701",记得加双引号防止出现空格,该目录要挂载在docker中/open_explorer目录下。
******dataset根目录(放数据集的地方,这里没用到):我的环境下是"G:\bushu_xiangguan\Codes\dateset",记得加双引号防止出现空格,该目录需要挂载在docker中的/data/horizon_x3/data目录下。
******辅助文件夹根目录:官方教程其实是没有这个过程的,把这个挂载在docker里,就是充当个类似U盘的介质。比如在我的环境下是"G:\bushu_xiangguan\BPUCodes",我可以在windows里面往这个文件夹拷贝数据,这些数据就可以在docker中使用,该目录需要挂载在docker中的/data/horizon_x3/codes目录下。
上面这些目录都需要自己建。

win+R→cmd,进入命令符,输入如下指令即可进入docker:
CMD不支持换行,记得删掉后面的\然后整理为一行

docker run -it --rm \
-v "G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701":/open_explorer \
-v "G:\bushu_xiangguan\Codes\dateset":/data/horizon_x3/data \
-v "G:\bushu_xiangguan\BPUCodes":/data/horizon_x3/codes \
openexplorer/ai_toolchain_centos_7:v1.13.6

在这里插入图片描述
两个箭头是挂载的目标目录:其中天工开物OpenExplorer根目录挂载到了open_explorer目录下;dataset根目录和辅助文件夹根目录挂载到了data/horizon_x3下的codes和data目录下。

2、开启模型转换主流程:
首先在BPUcodes下新建yolov5目录,在yolov5中再新建一个bpucodes,将前面转换好的onnx模型放进去。
2.1、onnx模型检查:
docker中进入bpucodes目录:
在这里插入图片描述
输入hb_mapper checker --model-type onnx --march bernoulli2 --model yolov5s.onnx开始模型检查。如下图即检查成功。
在这里插入图片描述
检查指令的各个参数含义如下:
在这里插入图片描述
实际上在天工开物工具包里提供了脚本进行模型转换各个步骤,以yolov5为例子,路径如下:
G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701\ddk\samples\ai_toolchain\horizon_model_convert_sample\04_detection\03_yolov5s\mapper
在这里插入图片描述
上面进行模型验证的命令实际上也就是01_check.sh执行的主要内容。
2.2、准备校准数据
这步实际上就是运行02_preprocess.sh这个脚本,这个脚本的核心调用的是python文件data_preprocess.py。它位于:
G:\bushu_xiangguan\horizon_xj3_open_explorer_v2.2.3a_20220701\ddk\samples\ai_toolchain\horizon_model_convert_sample。
如果要部署自己训练的模型的话,这个工具包里没有对应的脚本去准备校准数据,所以这个py是比较好的选择,将写完的prepare_calibration_data.py文件也放进自己建的bpucodes文件夹中,这里面的src_root就是待校准的图片100张,这里使用coco数据集里的。dst_root就是保存校准完的图片的文件夹。

# prepare_calibration_data.py
import os
import cv2
import numpy as np

src_root = '/open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/01_common/calibration_data/coco'
cal_img_num = 100  # 想要的图像个数
dst_root = '/data/horizon_x3/codes/yolov5/bpucodes/calibration_data'


## 1. 从原始图像文件夹中获取100个图像作为校准数据
num_count = 0
img_names = []
for src_name in sorted(os.listdir(src_root)):
    if num_count > cal_img_num:
        break
    img_names.append(src_name)
    num_count += 1

# 检查目标文件夹是否存在,如果不存在就创建
if not os.path.exists(dst_root):
    os.system('mkdir {0}'.format(dst_root))

## 2 为每个图像转换
# 参考了OE中/open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/01_common/python/data/下的相关代码
# 转换代码写的很棒,很智能,考虑它并不是官方python包,所以我打算换一种写法

## 2.1 定义图像缩放函数,返回为np.float32
# 图像缩放为目标尺寸(W, H)
# 值得注意的是,缩放时候,长宽等比例缩放,空白的区域填充颜色为pad_value, 默认127
def imequalresize(img, target_size, pad_value=127.):
    target_w, target_h = target_size
    image_h, image_w = img.shape[:2]
    img_channel = 3 if len(img.shape) > 2 else 1

    # 确定缩放尺度,确定最终目标尺寸
    scale = min(target_w * 1.0 / image_w, target_h * 1.0 / image_h)
    new_h, new_w = int(scale * image_h), int(scale * image_w)

    resize_image = cv2.resize(img, (new_w, new_h))

    # 准备待返回图像
    pad_image = np.full(shape=[target_h, target_w, img_channel], fill_value=pad_value)

    # 将图像resize_image放置在pad_image的中间
    dw, dh = (target_w - new_w) // 2, (target_h - new_h) // 2
    pad_image[dh:new_h + dh, dw:new_w + dw, :] = resize_image

    return pad_image

## 2.2 开始转换
for each_imgname in img_names:
    img_path = os.path.join(src_root, each_imgname)

    img = cv2.imread(img_path)  # BRG, HWC
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB, HWC
    img = imequalresize(img, (640, 640))
    img = np.transpose(img, (2, 0, 1))  # RGB, CHW

    # 将图像保存到目标文件夹下
    dst_path = os.path.join(dst_root, each_imgname + '.rgbchw')
    print("write:%s" % dst_path)
    # 图像加载默认就是uint8,但是不加这个astype的话转换模型就会出错
    # 转换模型时候,加载进来的数据竟然是float64,不清楚内部是怎么加载的。
    img.astype(np.uint8).tofile(dst_path) 

print('finish')

更改src_root 和drt_root为自己的路径。执行python3 prepare_callbration_data.py
在这里插入图片描述

2.3、模型转换
模型转换的核心在于配置目标的yaml文件。官方也提供了一个yolov5s_config.yaml可供用户直接试用,每个参数都给了注释。然而模型转换的配置文件参数太多,如果想改参数都不知道如何下手。本yaml模板适用于的模型具有如下属性:无自定义层,换句话说,BPU支持该模型的所有层。输入节点只有1个,且输入是图像。
自己写的yolov5_simple.yaml文件也放到bpucodes下。

model_parameters:
  onnx_model: 'yolov5s.onnx'
  output_model_file_prefix: 'yolov5s'
  march: 'bernoulli2'
input_parameters:
  input_type_train: 'rgb'
  input_layout_train: 'NCHW'
  input_type_rt: 'nv12'
  norm_type: 'data_scale'
  scale_value: 0.003921568627451
  input_layout_rt: 'NHWC'
calibration_parameters:
  cal_data_dir: './calibration_data'
  calibration_type: 'max'
  max_percentile: 0.9999
compiler_parameters:
  compile_mode: 'latency'
  optimize_level: 'O3'
  debug: False
  core_num: 2  # x3p是双核BPU,所以指定为2可以速度更快

输入:hb_mapper makertbin --config convert_yolov5s.yaml --model-type onnx即开始模型转换。转换成功后,得到model_output/yolov5s.bin,它就是上板运行所需要的模型文件。
在这里插入图片描述

四、上板运行

在这里插入图片描述
将这些文件拷贝到x3派新建的测试文件夹中,一部分是要到百度网盘中获取的。
输入sudo apt-get install libopencv-dev安装opencv库,进入这里这个test_yolov5文件夹,执行:python3 setup.py build_ext --inplace编译后处理代码,得到lib/pyyolotools.cpython-38-aarch64-linux-gnu.so文件。

输入:sudo python3 inference_model_bpu.py进行推理,推理完成之后会保存结果图片:
在这里插入图片描述
这个未优化的初始yolvv5模型还是很捞的,推理速度很慢。但是这里后处理速度很快,cython封装加速的结果。后处理就是指模型推理完成之后在图片上画出结果的过程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1877563.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于单片机技术的按键扫描电路分析

摘 要: 单片机应用技术被广泛应用于各种智能控制系统中,是电子信息类专业学生必修的一门专业课。在单片机端口信息输入模块中,按键是主要元器件之一,笔者主要介绍矩阵键盘的电路设计及控制程序编写,分析了单片机端口连…

C++:enum枚举共用体union

enum枚举 C继承C的枚举用法 (1)典型枚举类型定义,枚举变量定义和使用 (2)枚举类型中的枚举值常量不能和其他外部常量名称冲突: 举例1宏定义,举例2另一个枚举 // 定义一个名为Color的枚举类型 enum Color {RED, // 红色,默认值…

(单机版)神魔大陆|v0.51.0|冰火荣耀

前言 今天给大家带来一款单机游戏的架设:神魔大陆v0.51.0:冰火荣耀。 如今市面上的资源参差不齐,大部分的都不能运行,本人亲自测试,运行视频如下: (单机版)神魔大陆 下面我将详细的教程交给大家,请耐心阅…

学校消防设施设备管理系统

建立和落实校园消防安全管理责任制,做到消防安全工作有人专管,部门和岗位有人落实的日常管理,及时发现消防安全隐患,及时反映,及时处理,杜绝校园内消防安全隐患。 凡尔码平台搭建学校消防设施设备管理系统可以通过设备管理系统对消防器材设施基本信息、设施有效期、…

Webpack: 开发 PWA、Node、Electron 应用

概述 毋庸置疑,对前端开发者而言,当下正是一个日升月恒的美好时代!在久远的过去,Web 页面的开发技术链条非常原始而粗糙,那时候的 JavaScript 更多用来点缀 Web 页面交互而不是用来构建一个完整的应用。直到 2009年5月…

Attention (注意力机制)

1. 背景: 字面的意思:给你一些东西(看见一个美女:).....),你会注意什么? 大数据的时代下,有太多的数据,我们又该如何选择重要的数据呢? Attention 诞生了,但是又该如何去做呢(i.e., …

原子变量原理剖析

一、原子操作 原子操作保证指令以原子的方式执行,执行过程不被打断。先看一个实例,如下所示,如果thread_func_a和thread_func_b同时运行,执行完成后,i的值是多少? // test.c static int i 0;void thread…

MathType7.6永久破解激活码注册码 包含安装包下载

MathType是一款强大的数学公式编辑器,它能够帮助用户轻松编辑各种复杂的数学公式和符号。无论是学生、教师还是科研人员,MathType都能提供专业、精确的数学公式编辑服务。 在学习和工作中,我们常常会遇到需要编写数学公式的情况。然而&#x…

Excel+vue+java实现批量处理功能

需求背景: 产品创建流程比较复杂,有时候需要一次性创建多至10个,所以做了Excel维护产品信息,直接导入创建的功能。能极大提高效率。 简要概括实现: 一、参考单个创建,设计创建模板,表头对应填写字段名&…

Go使用Gin框架开发的Web程序部署在Linux时,无法绑定监听Ipv4端口

最近有写一部分go语言开发的程序,在部署程序时发现,程序在启动后并没有绑定ipv4的端口,而是直接监听绑定ipv6的端口。 当我用netstat -antup | grep 3601查找我的gin服务启动的端口占用情况的时候发现,我的服务直接绑定了tcp6 &a…

容易涨粉的视频素材有哪些?容易涨粉的爆款短素材库网站分享

如何挑选社交媒体视频素材:顶级视频库推荐 在社交媒体上脱颖而出,视频素材的选择至关重要。以下是一些顶级的视频素材网站推荐,不仅可以提升视频质量,还能帮助你吸引更多粉丝。 蛙学网:创意的源泉 作为创意和独特性的…

使用 Ubuntu x86_64 平台交叉编译适用于 Linux aarch64(arm64) 平台的 QT5(包含OpenGL/WebEngine支持) 库

使用 Ubuntu AMD64 平台交叉编译适用于 Linux ARM64 平台的 QT5(包含 OpenGL/WebEngine 支持) 库 目录 使用 Ubuntu AMD64 平台交叉编译适用于 Linux ARM64 平台的 QT5(包含 OpenGL/WebEngine 支持) 库写在前面前期准备编译全流程1. 环境搭建2. 复制源码包并解压,创…

信息就像糖,让人上瘾

今天阅读阮一峰的科技爱好者周刊,其中提到一个观点「信息就像糖,让人上瘾」,让人印象深,糖之所以上瘾,是因为会让人增加多巴胺的分泌,让人成瘾。而研究表明,信息上瘾跟糖上瘾一样,信…

Golang | Leetcode Golang题解之第198题打家劫舍

题目&#xff1a; 题解&#xff1a; func rob(nums []int) int {if len(nums) 0 {return 0}if len(nums) 1 {return nums[0]}first : nums[0]second : max(nums[0], nums[1])for i : 2; i < len(nums); i {first, second second, max(first nums[i], second)}return se…

保姆教程教你如何使用数据集运行ORB-SLAM3

链接: 自学SLAM&#xff08;2&#xff09;—保姆教程教你如何使用自己的视频运行ORB-SLAM2 这篇文章是详细教怎么运行ORB-SLAM2的&#xff0c;那么下来我们就看看怎么运行ORB-SLAM3 理论上ORB-SLAM2的环境也是可以跑ORB-SLAM3的&#xff0c;因为我之前试过&#xff0c;编译成功…

力扣300. 最长递增子序列(动态规划)

Problem: 300. 最长递增子序列 文章目录 题目描述思路及解法复杂度Code 题目描述 思路及解法 明确题目涉及到求取最值问题因此我们可以考虑使用动态规划来解决问题 1.定义状态&#xff1a;定义int类型的dp数组表示以nums[i]结尾的序列的最长长度&#xff0c;初始化均为1即表示…

spring mvc实现自定义验证器Validator

使用场景 在接口开发的日常实践中&#xff0c;确保数据准确性是保障业务稳定性的关键一环。面对诸如登录时验证用户名密码非空、创建用户时检查邮箱和手机号格式的正确性等需求&#xff0c;手动编写校验逻辑不仅耗时费力&#xff0c;还会显著降低代码的可读性和维护性。鉴于网…

[OtterCTF 2018]Graphic‘s For The Weak

恶意软件的图形中有些可疑之处。 软件图形 &#xff1f;&#xff1f;&#xff1f;这里的恶意文件都是 vmware-tray.ex使用procdump转存进程的可执行文件 &#xff08;可执行的&#xff09;导出了 &#xff0c;看文件里面是否存在 图片 volatility.exe -f .\OtterCTF.vmem --pro…

springboot+vue+mybatis奶茶管理系统+PPT+论文+讲解+售后

由于科学技术的快速发展&#xff0c;人们的生活也与信息时代的发展相关。同时&#xff0c;随着市场化和经济化的发展&#xff0c;国内很多行业已经意识到了这一点&#xff0c;为了提升行业的竞争力&#xff0c;就应当率先把握机会。于是在互联网的默化潜移影响下&#xff0c;餐…

QT4-QT5(6)-const char* QString 乱码转换

我简单粗暴的给出个结论&#xff1a; QString GBK编码正常&#xff0c;可以转UTF-8编码&#xff0c;但会有少量乱码。 const char* 编码就不要转编码&#xff0c;转哪个都是乱码。 UTF-8.cpp 下 1.QString GBK->UTF-8 2.const char * GBK->UTF-8 const char *…