电子模块|心率血氧传感器模块MAX30102及其驱动代码

news2025/1/16 0:47:36

电子模块|心率血氧传感器模块MAX30102及其驱动代码

  • 实物照片
  • 模块简介
  • 工作原理
  • 原理图及引脚说明
  • STM32软件驱动
    • IIC通信代码
    • 数值转换代码
    • main函数
  • 结果

实物照片

在这里插入图片描述
在这里插入图片描述

模块简介

MAX30102是一个集成的脉搏血氧仪和心率监测仪生物传感器的模块。

它集成了一个红光LED和一个红外光LED、光电检测器、光器件,以及带环境光抑制的低噪声电子电路。

MAX30102采用一个1.8V电源和一个独立的5.0V用于内部LED的电源,应用于可穿戴设备进行心率和血氧采集检测,佩戴于手指点耳垂和手腕处。

标准的I2C兼容的通信接口可以将采集到的数值传输给Arduino、KL25Z、STM32、STC51等单片机进行心率和血氧计算。

此外,该芯片还可以通过软件关断模块,待机电流接近为零,实现电源始终维持供电状态。

主要参数:

产品名称MAX30102 心率模块
LED峰值波长器660nm/880nm
LED供电电压3.3 ~ 5V
检测信号类型光反射信号(PPG)
输出信号接口I2C接口
通信接口电压1.8 ~ 3.3V ~ 5V(可选)

产品尺寸
在这里插入图片描述

工作原理

光溶积法:利用人体组织在血管搏动时造成透光率不同来进行脉搏和血氧饱和度测量

光源:采用对动脉血中痒合血红蛋白(HbO2)和血红蛋白(Hb)有选择性的特定波长的发光二极管

透光率转化为电信号:动脉搏动充血容积变化导致这束光的透光率发送改变,此时由光电变换接收经人体组织反射光线,转变为电信号并将其放大输出。
在这里插入图片描述

原理图及引脚说明

在这里插入图片描述

在这里插入图片描述
引脚说明

名称管教定义
VIN电源输入 1.6V-5.5V
3位焊盘选择总线的上拉电平,取决于引脚主控电压可选1.8v或者3.3v
SDAIIC-SDA
SCLIIC-SCL
GND
INTINT 低电平有效中断(漏极开路)MAX30102 的中断引脚
IRDIR_DRV IR LED阴极和LED驱动器连接点 一般不接
RDR_DRV 红色LED阴极和LED驱动器连接点 一般不接

STM32软件驱动

使用STM32F103C8T6最小系统开发板验证。

接线如下:
MAX30102模块接口:PB9-SDA,PB8-SCL,PB7-INT
PA2/PA3为串口传输口TX和RX,波特率设置为115200
PC13为显示LED

IIC通信代码

#include "mbed.h"
#include "MAX30102.h"


I2C i2c(I2C_SDA, I2C_SCL);//SDA-PB9,SCL-PB8


bool maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data)
/**
* \brief        Write a value to a MAX30102 register
* \par          Details
*               This function writes a value to a MAX30102 register
*
* \param[in]    uch_addr    - register address
* \param[in]    uch_data    - register data
*
* \retval       true on success
*/
{
  char ach_i2c_data[2];
  ach_i2c_data[0]=uch_addr;
  ach_i2c_data[1]=uch_data;
  
  if(i2c.write(I2C_WRITE_ADDR, ach_i2c_data, 2, false)==0)
    return true;
  else
    return false;
}

bool maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data)
/**
* \brief        Read a MAX30102 register
* \par          Details
*               This function reads a MAX30102 register
*
* \param[in]    uch_addr    - register address
* \param[out]   puch_data    - pointer that stores the register data
*
* \retval       true on success
*/
{
  char ch_i2c_data;
  ch_i2c_data=uch_addr;
  if(i2c.write(I2C_WRITE_ADDR, &ch_i2c_data, 1, true)!=0)
    return false;
  if(i2c.read(I2C_READ_ADDR, &ch_i2c_data, 1, false)==0)
  {
    *puch_data=(uint8_t) ch_i2c_data;
    return true;
  }
  else
    return false;
}

bool maxim_max30102_init()
/**
* \brief        Initialize the MAX30102
* \par          Details
*               This function initializes the MAX30102
*
* \param        None
*
* \retval       true on success
*/
{
  if(!maxim_max30102_write_reg(REG_INTR_ENABLE_1,0xc0)) // INTR setting
    return false;
  if(!maxim_max30102_write_reg(REG_INTR_ENABLE_2,0x00))
    return false;
  if(!maxim_max30102_write_reg(REG_FIFO_WR_PTR,0x00))  //FIFO_WR_PTR[4:0]
    return false;
  if(!maxim_max30102_write_reg(REG_OVF_COUNTER,0x00))  //OVF_COUNTER[4:0]
    return false;
  if(!maxim_max30102_write_reg(REG_FIFO_RD_PTR,0x00))  //FIFO_RD_PTR[4:0]
    return false;
  if(!maxim_max30102_write_reg(REG_FIFO_CONFIG,0x0f))  //sample avg = 1, fifo rollover=false, fifo almost full = 17
    return false;
  if(!maxim_max30102_write_reg(REG_MODE_CONFIG,0x03))   //0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
    return false;
  if(!maxim_max30102_write_reg(REG_SPO2_CONFIG,0x27))  // SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)
    return false;
  
  if(!maxim_max30102_write_reg(REG_LED1_PA,0x24))   //Choose value for ~ 7mA for LED1
    return false;
  if(!maxim_max30102_write_reg(REG_LED2_PA,0x24))   // Choose value for ~ 7mA for LED2
    return false;
  if(!maxim_max30102_write_reg(REG_PILOT_PA,0x7f))   // Choose value for ~ 25mA for Pilot LED
    return false;
  return true;  
}

bool maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led)
/**
* \brief        Read a set of samples from the MAX30102 FIFO register
* \par          Details
*               This function reads a set of samples from the MAX30102 FIFO register
*
* \param[out]   *pun_red_led   - pointer that stores the red LED reading data
* \param[out]   *pun_ir_led    - pointer that stores the IR LED reading data
*
* \retval       true on success
*/
{
  uint32_t un_temp;
  unsigned char uch_temp;
  *pun_red_led=0;
  *pun_ir_led=0;
  char ach_i2c_data[6];
  
  //read and clear status register
  maxim_max30102_read_reg(REG_INTR_STATUS_1, &uch_temp);
  maxim_max30102_read_reg(REG_INTR_STATUS_2, &uch_temp);
  
  ach_i2c_data[0]=REG_FIFO_DATA;
  if(i2c.write(I2C_WRITE_ADDR, ach_i2c_data, 1, true)!=0)
    return false;
  if(i2c.read(I2C_READ_ADDR, ach_i2c_data, 6, false)!=0)
  {
    return false;
  }
  un_temp=(unsigned char) ach_i2c_data[0];
  un_temp<<=16;
  *pun_red_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[1];
  un_temp<<=8;
  *pun_red_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[2];
  *pun_red_led+=un_temp;
  
  un_temp=(unsigned char) ach_i2c_data[3];
  un_temp<<=16;
  *pun_ir_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[4];
  un_temp<<=8;
  *pun_ir_led+=un_temp;
  un_temp=(unsigned char) ach_i2c_data[5];
  *pun_ir_led+=un_temp;
  *pun_red_led&=0x03FFFF;  //Mask MSB [23:18]
  *pun_ir_led&=0x03FFFF;  //Mask MSB [23:18]
  
  
  return true;
}

bool maxim_max30102_reset()
/**
* \brief        Reset the MAX30102
* \par          Details
*               This function resets the MAX30102
*
* \param        None
*
* \retval       true on success
*/
{
    if(!maxim_max30102_write_reg(REG_MODE_CONFIG,0x40))
        return false;
    else
        return true;    
}

数值转换代码

#include "algorithm.h"
#include "mbed.h"

void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer,  int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, 
                              int32_t *pn_heart_rate, int8_t  *pch_hr_valid)
/**
* \brief        Calculate the heart rate and SpO2 level
* \par          Details
*               By detecting  peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
*               Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
*               Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
*
* \param[in]    *pun_ir_buffer           - IR sensor data buffer
* \param[in]    n_ir_buffer_length      - IR sensor data buffer length
* \param[in]    *pun_red_buffer          - Red sensor data buffer
* \param[out]    *pn_spo2                - Calculated SpO2 value
* \param[out]    *pch_spo2_valid         - 1 if the calculated SpO2 value is valid
* \param[out]    *pn_heart_rate          - Calculated heart rate value
* \param[out]    *pch_hr_valid           - 1 if the calculated heart rate value is valid
*
* \retval       None
*/
{
    uint32_t un_ir_mean ,un_only_once ;
    int32_t k ,n_i_ratio_count;
    int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx;
    int32_t n_th1, n_npks,n_c_min;      
    int32_t an_ir_valley_locs[15] ;
    int32_t an_exact_ir_valley_locs[15] ;
    int32_t an_dx_peak_locs[15] ;
    int32_t n_peak_interval_sum;
    
    int32_t n_y_ac, n_x_ac;
    int32_t n_spo2_calc; 
    int32_t n_y_dc_max, n_x_dc_max; 
    int32_t n_y_dc_max_idx, n_x_dc_max_idx; 
    int32_t an_ratio[5],n_ratio_average; 
    int32_t n_nume,  n_denom ;
    // remove DC of ir signal    
    un_ir_mean =0; 
    for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ;
    un_ir_mean =un_ir_mean/n_ir_buffer_length ;
    for (k=0 ; k<n_ir_buffer_length ; k++ )  an_x[k] =  pun_ir_buffer[k] - un_ir_mean ; 
    
    // 4 pt Moving Average
    for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
        n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]);
        an_x[k]=  n_denom/(int32_t)4; 
    }

    // get difference of smoothed IR signal
    
    for( k=0; k<BUFFER_SIZE-MA4_SIZE-1;  k++)
        an_dx[k]= (an_x[k+1]- an_x[k]);

    // 2-pt Moving Average to an_dx
    for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){
        an_dx[k] =  ( an_dx[k]+an_dx[k+1])/2 ;
    }
    
    // hamming window
    // flip wave form so that we can detect valley with peak detector
    for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){
        s= 0;
        for( k=i; k<i+ HAMMING_SIZE ;k++){
            s -= an_dx[k] *auw_hamm[k-i] ; 
                     }
        an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm 
    }

 
    n_th1=0; // threshold calculation
    for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){
        n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ;
    }
    n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE);
    // peak location is acutally index for sharpest location of raw signal since we flipped the signal         
    maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks 

    n_peak_interval_sum =0;
    if (n_npks>=2){
        for (k=1; k<n_npks; k++)
            n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]);
        n_peak_interval_sum=n_peak_interval_sum/(n_npks-1);
        *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes
        *pch_hr_valid  = 1;
    }
    else  {
        *pn_heart_rate = -999;
        *pch_hr_valid  = 0;
    }
            
    for ( k=0 ; k<n_npks ;k++)
        an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2; 


    // raw value : RED(=y) and IR(=X)
    // we need to assess DC and AC value of ir and red PPG. 
    for (k=0 ; k<n_ir_buffer_length ; k++ )  {
        an_x[k] =  pun_ir_buffer[k] ; 
        an_y[k] =  pun_red_buffer[k] ; 
    }

    // find precise min near an_ir_valley_locs
    n_exact_ir_valley_locs_count =0; 
    for(k=0 ; k<n_npks ;k++){
        un_only_once =1;
        m=an_ir_valley_locs[k];
        n_c_min= 16777216;//2^24;
        if (m+5 <  BUFFER_SIZE-HAMMING_SIZE  && m-5 >0){
            for(i= m-5;i<m+5; i++)
                if (an_x[i]<n_c_min){
                    if (un_only_once >0){
                       un_only_once =0;
                   } 
                   n_c_min= an_x[i] ;
                   an_exact_ir_valley_locs[k]=i;
                }
            if (un_only_once ==0)
                n_exact_ir_valley_locs_count ++ ;
        }
    }
    if (n_exact_ir_valley_locs_count <2 ){
       *pn_spo2 =  -999 ; // do not use SPO2 since signal ratio is out of range
       *pch_spo2_valid  = 0; 
       return;
    }
    // 4 pt MA
    for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){
        an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4;
        an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4;
    }

    //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio
    //finding AC/DC maximum of raw ir * red between two valley locations
    n_ratio_average =0; 
    n_i_ratio_count =0; 
    
    for(k=0; k< 5; k++) an_ratio[k]=0;
    for (k=0; k< n_exact_ir_valley_locs_count; k++){
        if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){             
            *pn_spo2 =  -999 ; // do not use SPO2 since valley loc is out of range
            *pch_spo2_valid  = 0; 
            return;
        }
    }
    // find max between two valley locations 
    // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 

    for (k=0; k< n_exact_ir_valley_locs_count-1; k++){
        n_y_dc_max= -16777216 ; 
        n_x_dc_max= - 16777216; 
        if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){
            for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){
                if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; }
                if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;}
            }
            n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red
            n_y_ac=  an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k])  ; 
        
        
            n_y_ac=  an_y[n_y_dc_max_idx] - n_y_ac;    // subracting linear DC compoenents from raw 
            n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
            n_x_ac=  an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]); 
            n_x_ac=  an_x[n_y_dc_max_idx] - n_x_ac;      // subracting linear DC compoenents from raw 
            n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
            n_denom= ( n_x_ac *n_y_dc_max)>>7;
            if (n_denom>0  && n_i_ratio_count <5 &&  n_nume != 0)
            {   
                an_ratio[n_i_ratio_count]= (n_nume*100)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ;
                n_i_ratio_count++;
            }
        }
    }

    maxim_sort_ascend(an_ratio, n_i_ratio_count);
    n_middle_idx= n_i_ratio_count/2;

    if (n_middle_idx >1)
        n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median
    else
        n_ratio_average = an_ratio[n_middle_idx ];

    if( n_ratio_average>2 && n_ratio_average <184){
        n_spo2_calc= uch_spo2_table[n_ratio_average] ;
        *pn_spo2 = n_spo2_calc ;
        *pch_spo2_valid  = 1;//  float_SPO2 =  -45.060*n_ratio_average* n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ;  // for comparison with table
    }
    else{
        *pn_spo2 =  -999 ; // do not use SPO2 since signal ratio is out of range
        *pch_spo2_valid  = 0; 
    }
}


void maxim_find_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num)
/**
* \brief        Find peaks
* \par          Details
*               Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
*
* \retval       None
*/
{
    maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height );
    maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance );
    *pn_npks = min( *pn_npks, n_max_num );
}

void maxim_peaks_above_min_height(int32_t *pn_locs, int32_t *pn_npks, int32_t  *pn_x, int32_t n_size, int32_t n_min_height)
/**
* \brief        Find peaks above n_min_height
* \par          Details
*               Find all peaks above MIN_HEIGHT
*
* \retval       None
*/
{
    int32_t i = 1, n_width;
    *pn_npks = 0;
    
    while (i < n_size-1){
        if (pn_x[i] > n_min_height && pn_x[i] > pn_x[i-1]){            // find left edge of potential peaks
            n_width = 1;
            while (i+n_width < n_size && pn_x[i] == pn_x[i+n_width])    // find flat peaks
                n_width++;
            if (pn_x[i] > pn_x[i+n_width] && (*pn_npks) < 15 ){                            // find right edge of peaks
                pn_locs[(*pn_npks)++] = i;        
                // for flat peaks, peak location is left edge
                i += n_width+1;
            }
            else
                i += n_width;
        }
        else
            i++;
    }
}


void maxim_remove_close_peaks(int32_t *pn_locs, int32_t *pn_npks, int32_t *pn_x, int32_t n_min_distance)
/**
* \brief        Remove peaks
* \par          Details
*               Remove peaks separated by less than MIN_DISTANCE
*
* \retval       None
*/
{
    
    int32_t i, j, n_old_npks, n_dist;
    
    /* Order peaks from large to small */
    maxim_sort_indices_descend( pn_x, pn_locs, *pn_npks );

    for ( i = -1; i < *pn_npks; i++ ){
        n_old_npks = *pn_npks;
        *pn_npks = i+1;
        for ( j = i+1; j < n_old_npks; j++ ){
            n_dist =  pn_locs[j] - ( i == -1 ? -1 : pn_locs[i] ); // lag-zero peak of autocorr is at index -1
            if ( n_dist > n_min_distance || n_dist < -n_min_distance )
                pn_locs[(*pn_npks)++] = pn_locs[j];
        }
    }

    // Resort indices longo ascending order
    maxim_sort_ascend( pn_locs, *pn_npks );
}

void maxim_sort_ascend(int32_t *pn_x,int32_t n_size) 
/**
* \brief        Sort array
* \par          Details
*               Sort array in ascending order (insertion sort algorithm)
*
* \retval       None
*/
{
    int32_t i, j, n_temp;
    for (i = 1; i < n_size; i++) {
        n_temp = pn_x[i];
        for (j = i; j > 0 && n_temp < pn_x[j-1]; j--)
            pn_x[j] = pn_x[j-1];
        pn_x[j] = n_temp;
    }
}

void maxim_sort_indices_descend(int32_t *pn_x, int32_t *pn_indx, int32_t n_size)
/**
* \brief        Sort indices
* \par          Details
*               Sort indices according to descending order (insertion sort algorithm)
*
* \retval       None
*/ 
{
    int32_t i, j, n_temp;
    for (i = 1; i < n_size; i++) {
        n_temp = pn_indx[i];
        for (j = i; j > 0 && pn_x[n_temp] > pn_x[pn_indx[j-1]]; j--)
            pn_indx[j] = pn_indx[j-1];
        pn_indx[j] = n_temp;
    }
}

main函数

#include "stm32f103c8t6.h"
#include "mbed.h"
#include "algorithm.h"
#include "MAX30102.h"

#define MAX_BRIGHTNESS 255

uint32_t aun_ir_buffer[500]; //IR LED sensor data
int32_t n_ir_buffer_length;    //data length
uint32_t aun_red_buffer[500];    //Red LED sensor data
int32_t n_sp02; //SPO2 value
int8_t ch_spo2_valid;   //indicator to show if the SP02 calculation is valid
int32_t n_heart_rate;   //heart rate value
int8_t  ch_hr_valid;    //indicator to show if the heart rate calculation is valid
uint8_t uch_dummy;

Serial pc(SERIAL_TX, SERIAL_RX);    //initializes the serial port, TX-PA2, RX-PA3

PwmOut pwmled(PB_3);  //initializes the pwm output PB3 that connects to the LED
DigitalIn INT(PB_7);  //pin PB7 connects to the interrupt output pin of the MAX30102
DigitalOut led(PC_13); //PC13 connects to the on board user LED


// the setup routine runs once when you press reset:
int main() { 
    uint32_t un_min, un_max, un_prev_data;  //variables to calculate the on-board LED brightness that reflects the heartbeats
    int i;
    int32_t n_brightness;
    float f_temp;
    
    maxim_max30102_reset(); //resets the MAX30102
    // initialize serial communication at 115200 bits per second:
    pc.baud(115200);
    pc.format(8,SerialBase::None,1);
    wait(1);
    
    //read and clear status register
    maxim_max30102_read_reg(0,&uch_dummy);
    
    //wait until the user presses a key
//    while(pc.readable()==0)
//    {
//        pc.printf("\x1B[2J");  //clear terminal program screen
//        pc.printf("Press any key to start conversion\n\r");
//        wait(1);
//    }
//    uch_dummy=getchar();
    
    maxim_max30102_init();  //initializes the MAX30102
        
        
    n_brightness=0;
    un_min=0x3FFFF;
    un_max=0;
  
    n_ir_buffer_length=500; //buffer length of 100 stores 5 seconds of samples running at 100sps
    
    //read the first 500 samples, and determine the signal range
    for(i=0;i<n_ir_buffer_length;i++)
    {
        while(INT.read()==1);   //wait until the interrupt pin asserts
        
        maxim_max30102_read_fifo((aun_red_buffer+i), (aun_ir_buffer+i));  //read from MAX30102 FIFO
            
        if(un_min>aun_red_buffer[i])
            un_min=aun_red_buffer[i];    //update signal min
        if(un_max<aun_red_buffer[i])
            un_max=aun_red_buffer[i];    //update signal max
        pc.printf("red=");
        pc.printf("%i", aun_red_buffer[i]);
        pc.printf(", ir=");
        pc.printf("%i\n\r", aun_ir_buffer[i]);
    }
    un_prev_data=aun_red_buffer[i];
    
    
    //calculate heart rate and SpO2 after first 500 samples (first 5 seconds of samples)
    maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); 
    
    //Continuously taking samples from MAX30102.  Heart rate and SpO2 are calculated every 1 second
    while(1)
    {
        i=0;
        un_min=0x3FFFF;
        un_max=0;
        
        //dumping the first 100 sets of samples in the memory and shift the last 400 sets of samples to the top
        for(i=100;i<500;i++)
        {
            aun_red_buffer[i-100]=aun_red_buffer[i];
            aun_ir_buffer[i-100]=aun_ir_buffer[i];
            
            //update the signal min and max
            if(un_min>aun_red_buffer[i])
            un_min=aun_red_buffer[i];
            if(un_max<aun_red_buffer[i])
            un_max=aun_red_buffer[i];
        }
        
        //take 100 sets of samples before calculating the heart rate.
        for(i=400;i<500;i++)
        {
            un_prev_data=aun_red_buffer[i-1];
            while(INT.read()==1);
            maxim_max30102_read_fifo((aun_red_buffer+i), (aun_ir_buffer+i));
        
            if(aun_red_buffer[i]>un_prev_data)//just to determine the brightness of LED according to the deviation of adjacent two AD data
            {
                f_temp=aun_red_buffer[i]-un_prev_data;
                f_temp/=(un_max-un_min);
                f_temp*=MAX_BRIGHTNESS;
                n_brightness-=(int)f_temp;
                if(n_brightness<0)
                    n_brightness=0;
            }
            else
            {
                f_temp=un_prev_data-aun_red_buffer[i];
                f_temp/=(un_max-un_min);
                f_temp*=MAX_BRIGHTNESS;
                n_brightness+=(int)f_temp;
                if(n_brightness>MAX_BRIGHTNESS)
                    n_brightness=MAX_BRIGHTNESS;
            }

            pwmled.write(1-(float)n_brightness/256);//pwm control led brightness
						if(n_brightness<120)
							led=1;
						else
							led=0;

            //send samples and calculation result to terminal program through UART
            pc.printf("red=");
            pc.printf("%i", aun_red_buffer[i]);
            pc.printf(", ir=");
            pc.printf("%i", aun_ir_buffer[i]);
            pc.printf(", HR=%i, ", n_heart_rate); 
            pc.printf("HRvalid=%i, ", ch_hr_valid);
            pc.printf("SpO2=%i, ", n_sp02);
            pc.printf("SPO2Valid=%i\n\r", ch_spo2_valid);
        }
        maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid); 
    }
}

结果

将输出数据转成曲线
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/187689.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【经济学】MIT 微观经济学 Microeconomoics

MIT 微观经济学P1 Introduction and Supply & Demand约束优化和机会成本供给和需求P1 Introduction and Supply & Demand 约束优化和机会成本 微观经济学是研究如何个人和公司做决定在一个稀缺的世界。稀缺性是微观经济的驱动力。 微观经济学是一系列约束优化练习&a…

Hadoop安全之Kerberos

简介 安全无小事&#xff0c;我们常常要为了预防安全问题而付出大量的代价。虽然小区楼道里面的灭火器、消防栓常年没人用&#xff0c;但是我们还是要准备着。我们之所以愿意为了这些小概率事件而付出巨大的成本&#xff0c;是因为安全问题一旦发生&#xff0c;很多时候我们将…

自学数据分析——数据分析方法和模型

一、数据分析方法 数据分析的思维需要培养&#xff0c;先模仿别人&#xff0c;从模仿者到创造者。首先需要建立数据的敏感性&#xff0c;能快速了解数据在说什么&#xff0c;下面我们以抖音教育直播为例&#xff0c;首先来了解核心指标&#xff0c;以及各个指标所表示的含义。…

17.Stream流

目录 一.Stream流 1.1 什么是Stream流 1.2 Stream流思想 1.3 Stream流的三类方法 1.4 获取Stream流 1.4.1 集合获取Stream流的方式 1.4.2 数组获取Stream流的方式 1.5 中间方法 1.6 终结方法 1.7 收集Stream流 1.7.1 什么是收集Stream流 1.7.2 收集方法 一.Stream流…

Ant Design Vue 之a-tree-select

Ant Design Vue 是比较流行的vue框架之一&#xff0c;主要是展示a-tree-select 的简单用法&#xff0c;a-tree-select组件主要用于展示树结构的选择。 <template><a-spin :spinning"confirmLoading"><a-form :form"form"><a-form-ite…

CnOpenDataA股上市公司社会责任报告数据

一、数据简介 A股上市公司社会责任报告数据由和讯网自2013年开始独家策划的产品&#xff0c;也是国内首家上市公司社会责任专业测评产品。上市公司社会责任报告专业测评体系从股东责任、员工责任、供应商、客户和消费者权益责任、环境责任和社会责任五项考察&#xff0c;各项分…

Linux Workqueue

Linux Workqueue 1、前言 Workqueue 是内核里面很重要的一个机制&#xff0c;特别是内核驱动&#xff0c;一般的小型任务 (work) 都不会自己起一个线程来处理&#xff0c;而是扔到 Workqueue 中处理。Workqueue 的主要工作就是用进程上下文来处理内核中大量的小任务。 所以 …

基于php的旅游管理系统

摘要随着计算机技术&#xff0c;网络技术的迅猛发展&#xff0c;Internet 的不断普及&#xff0c;网络在各个领域里发挥了越来越重要的作用。特别是随着近年人民生活水平不断提高&#xff0c;在线旅游给人们的旅游业带来了更大的发展机遇。在经济快速发展的带动下&#xff0c;旅…

【Linux】tar命令打包 | 查看压缩文件 | 打包时忽略文件

tar命令打包 | 查看压缩文件 | 打包时忽略文件 等操作 1.起因 今天下午写阿狸bot的代码的时候&#xff0c;写错了aiofiles的保存操作 # 正确写法 async def write_file_aio(path:str, value):async with aiofiles.open(path, w, encodingutf-8) as f:await f.write(json.dump…

MyBatis持久层框架详细解读:核心配置文件

文章目录1. 前言2. 多环境配置3. 类型别名4. 对象工厂5. 总结1. 前言 前面我们在使用 MyBatis 开发时&#xff0c;编写核心配置文件替换 JDBC 中的连接信息&#xff0c;解决了 JDBC 硬编码的问题。其实&#xff0c;MyBatis 核心配置文件中还可以配置很多的内容。 MyBatis 的配…

mongodb分片

分片是MongoDB的扩展方式,通过分片能够增加更多的机器来用对不断增加的负载和数据,还不影响应用.1.分片简介分片是指将数据拆分,将其分散存在不同机器上的过程.有时也叫分区.将数据分散在不同的机器上,不需要功能强大的大型计算机就可以存储更多的数据,处理更大的负载.使用几乎…

屏幕录制下载推荐(可以无水印录制视频)

您有没有遇到过这种情况&#xff0c;在使用录屏工具录制电脑屏幕时&#xff0c;录制出来的视频是带有明显水印的。那有没有可以无水印录制的屏幕录制推荐呢&#xff1f;当然有。最近小编发现了一款可以无水印&#xff08;自定义图文水印&#xff09;录制的视频&#xff0c;快来…

Pycharm误触ignore的解决方法--有图

步骤1&#xff1a;进入pycharm编辑器之后&#xff0c;找到菜单栏中的file选项&#xff0c;点击之后会有一个下拉列表&#xff0c;直接选择settings&#xff0c;进入到设置的窗口。步骤2&#xff1a;在设置界面的左侧&#xff0c;找到Inspections选项&#xff0c;点击之后&#…

JavaScript 练手小技巧:拖拽事件、把图片拖拽入页面

HTML5 新增了拖拽事件 drag&#xff0c;利用它可以实现把外部文件拖拽入页面中&#xff0c;可以实现文件的读取&#xff0c;上传等等功能。 拖拽&#xff0c;又叫拖拉、拖动&#xff0c;英文为 drag。 拖拽事件是 HTML5 新增的事件操作。 拖拽指的是&#xff0c;用户在某个对…

【Rust】4. Rust 基础

4. Rust 基础 4.1 变量和可变性 4.1.1 常量 const xxx: type ...&#xff1a;常量使用 const 来定义&#xff0c;且必须注明值的类型常量在声明它的作用域之中&#xff0c;常量在整个程序生命周期中都有效 4.1.2 隐藏&#xff08;Shadowing&#xff09; 隐藏&#xff08;Sh…

基于卡尔曼滤波器的PID控制-1

采用M语言对算例进行仿真&#xff01;&#xff01;设置控制对象传递函数&#xff1a;取采样时间为1ms&#xff0c;采用Z变换将对象离散化&#xff0c;并描述为离散状态方程的形式&#xff1a;x(k 1) Ax(k) B(u(k)wk))y(k) Cx(k)带有测量噪声的被控对象输出为&#xff1a;yv(k)C…

Ubuntu18.04下安装OpenCV4.2.0与Opencv_contrib(图文详细报错总结)

Ubuntu18.04下安装OpenCV4.2.0与Opencv_contrib&#xff08;图文详细&#xff09;前期准备—环境依赖Cmake&#xff08;编译器&#xff09;依赖环境Python环境streamer环境图像处理依赖安装OpenCV编译OpenCV配置cmake编译参数make编译配置OpenCV动态库验证OpenCV环境# python环…

724. 寻找数组的中心下标——你行吗???

兄弟们&#xff0c;今早遇到了一个题&#xff0c;案例看起来很简单&#xff0c;于是就尝试起来&#xff0c;求知己&#x1f62d;题目描述724. 寻找数组的中心下标难度简单511收藏分享切换为英文接收动态反馈给你一个整数数组 nums &#xff0c;请计算数组的 中心下标 。数组 中…

一文了解 Java 中 so 文件的加载原理

前言 无论是 Android 开发者还是 Java 工程师应该都有使用过 JNI 开发&#xff0c;但对于 JVM 如何加载 so、Android 系统如何加载 so&#xff0c;可能鲜有时间了解。 本文通过代码、流程解释&#xff0c;带大家快速了解其加载原理&#xff0c;扫清困惑。 1. System#load() …

3.1.2 访问控制符及修饰符

文章目录1.访问控制符2.静态字段/方法/代码块2.1 静态字段2.2 静态常量2.3 静态方法2.4 特点2.5 static入门案例2.6 静态的调用关系2.7 静态代码块2.7.1 格式2.7.2 特性&#xff1a;2.7.3 执行顺序2.7.4 案例练习3.final的概念3.1 特点3.2 final入门案例1.访问控制符 在JAVA中…