mindspore打卡第9天 transformer的encoder和decoder部分

news2024/11/24 6:54:11

mindspore打卡第9天 transformer的encoder和decoder部分

import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor
from mindspore import dtype as mstype


class ScaledDotProductAttention(nn.Cell):
    def __init__(self, dropout_p=0.):
        super().__init__()
        self.softmax = nn.Softmax()
        self.dropout = nn.Dropout(1-dropout_p)
        self.sqrt = ops.Sqrt()


    def construct(self, query, key, value, attn_mask=None):
        """scaled dot product attention"""
        # 计算scaling factor
        embed_size = query.shape[-1]
        scaling_factor = self.sqrt(Tensor(embed_size, mstype.float32))
        
        # 注意力权重计算
        # 计算query和key之间的点积,并除以scaling factor进行归一化
        attn = ops.matmul(query, key.swapaxes(-2, -1) / scaling_factor)

        # 注意力掩码机制
        if attn_mask is not None:
            attn = attn.masked_fill(attn_mask, -1e9)
        
        # softmax,保证注意力权重范围在0-1之间
        attn = self.softmax(attn)

        # dropout
        attn = self.dropout(attn)

        # 对value进行加权
        output = ops.matmul(attn, value)  ## QK  V

        return (output, attn)
def get_attn_pad_mask(seq_q, seq_k, pad_idx):
    """注意力掩码:识别序列中的<pad>占位符

    Args:
        seq_q (Tensor): query序列,shape = [batch size, query len]
        seq_k (Tensor): key序列,shape = [batch size, key len]
        pad_idx (Tensor): key序列<pad>占位符对应的数字索引
    """
    batch_size, len_q = seq_q.shape
    batch_size, len_k = seq_k.shape

    # 如果序列中元素对应<pad>占位符,则该位置在mask中对应元素为True
    # pad_attn_mask: [batch size, key len]
    pad_attn_mask = ops.equal(seq_k, pad_idx)

    # 增加额外的维度
    # pad_attn_mask: [batch size, 1, key len]
    pad_attn_mask = pad_attn_mask.expand_dims(1)
    # 将掩码广播到[batch size, query len, key len]
    pad_attn_mask = ops.broadcast_to(pad_attn_mask, (batch_size, len_q, len_k))

    return pad_attn_mask
q = k = Tensor([[1, 1, 0, 0]], mstype.float32)
pad_idx = 0
mask = get_attn_pad_mask(q, k, pad_idx)
print(mask)
print(q.shape, mask.shape)
[[[False False  True  True]
  [False False  True  True]
  [False False  True  True]
  [False False  True  True]]]
(1, 4) (1, 4, 4)

自注意力分数的计算还是遵循着上述的公式,只不过这里的query, keyvalue都变成了句子本身。

给定序列 X ∈ R n × d m o d e l X \in \mathbb{R}^{n \times d_{model}} XRn×dmodel,序列长度为 n n n,维度为 d m o d e l d_{model} dmodel。在计算自注意力时, Q = K = V = X Q = K = V = X Q=K=V=X

Attention ( Q , K , V ) = softmax ( Q K T d m o d e l ) V = softmax ( X X T d m o d e l ) X \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_{model}}}\right)V = \text{softmax}\left(\frac{XX^T}{\sqrt{d_{model}}}\right)X Attention(Q,K,V)=softmax(dmodel QKT)V=softmax(dmodel XXT)X

其中,序列中位置为 i i i的词与位置为 j j j的词之间的自注意力分数为:

Attention ( Q , K , V ) i , j = exp ( Q i K j T d m o d e l ) ∑ k = 1 n exp ( Q i K k T d m o d e l ) V j \text{Attention}(Q, K, V)_{i,j} = \frac{\text{exp}\left(\frac{Q_iK_j^T}{\sqrt{d_{model}}}\right)}{\sum_{k=1}^{n}\text{exp}\left(\frac{Q_iK_k^T}{\sqrt{d_{model}}}\right)}V_j Attention(Q,K,V)i,j=k=1nexp(dmodel QiKkT)exp(dmodel QiKjT)Vj

多头注意力(Multi-Head Attention)

图片来源:Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

多头注意力是注意力机制的扩展,它可以使模型通过不同的方式关注输入序列的不同部分,从而提升模型的训练效果。

不同于之前一次计算整体输入的注意力分数,多头注意力是多次计算,每次计算输入序列中某一部分的注意力分数,最后再将结果进行整合。

多头注意力通过对输入的embedding乘以不同的权重参数 W Q W^{Q} WQ W K W^{K} WK W V W^{V} WV,将其映射到多个小维度空间中,我们称之为“头”(head),每个头部会并行计算自己的自注意力分数。

head i = Attention ( Q W i Q , K W i K , V W i V ) = softmax ( Q i K i T d k ) V i \text{head}_i = \text{Attention}(QW^Q_i, KW^K_i, VW^V_i) = \text{softmax}\left(\frac{Q_iK_i^T}{\sqrt{d_{k}}}\right)V_i headi=Attention(QWiQ,KWiK,VWiV)=softmax(dk QiKiT)Vi

W i Q ∈ R d m o d e l × d k W^Q_i \in \mathbb{R}^{d_{model}\times d_{k}} WiQRdmodel×dk W i K ∈ R d m o d e l × d k W^K_i \in \mathbb{R}^{d_{model}\times d_{k}} WiKRdmodel×dk W i V ∈ R d m o d e l × d v W^V_i \in \mathbb{R}^{d_{model}\times d_{v}} WiVRdmodel×dv为可学习的权重参数。一般为了平衡计算成本,我们会取 d k = d v = d m o d e l / n h e a d d_k = d_v = d_{model} / n_{head} dk=dv=dmodel/nhead

在获得多组自注意力分数后,我们将结果拼接到一起,得到多头注意力的最终输出。 W O W^O WO为可学习的权重参数,用于将拼接后的多头注意力输出映射回原来的维度。

MultiHead ( Q , K , V ) = Concat ( head 1 , . . . , head h ) W O \text{MultiHead}(Q, K, V)=\text{Concat}(\text{head}_1, ..., \text{head}_h)W^O MultiHead(Q,K,V)=Concat(head1,...,headh)WO

简单来说,在多头注意力中,每个头部可以’解读’输入内容的不同方面,比如:捕捉全局依赖关系、关注特定语境下的词元、识别词和词之间的语法关系等。

class MultiHeadAttention(nn.Cell):
    def __init__(self, d_model, d_k, n_heads, dropout_p=0.):
        super().__init__()
        self.n_heads = n_heads
        self.d_k = d_k
        self.W_Q = nn.Dense(d_model, d_k * n_heads)
        self.W_K = nn.Dense(d_model, d_k * n_heads)
        self.W_V = nn.Dense(d_model, d_k * n_heads)
        self.W_O = nn.Dense(n_heads * d_k, d_model)
        self.attention = ScaledDotProductAttention(dropout_p=dropout_p)

    def construct(self, query, key, value, attn_mask):
        """
        query: [batch_size, len_q, d_model]
        key: [batch_size, len_k, d_model]
        value: [batch_size, len_k, d_model]
        attn_mask: [batch_size, seq_len, seq_len]
        """

        batch_size = query.shape[0]

        # 将query,key和value分别乘以对应的权重,并分割为不同的“头”
        # q_s: [batch_size, len_q, n_heads, d_k]
        # k_s: [batch_size, len_k, n_heads, d_k]
        # v_s: [batch_size, len_k, n_heads, d_k]
        q_s = self.W_Q(query).view(batch_size, -1, self.n_heads, self.d_k)
        k_s = self.W_K(key).view(batch_size, -1, self.n_heads, self.d_k)
        v_s = self.W_V(value).view(batch_size, -1, self.n_heads, self.d_k)

        # 调整query,key和value的维度
        # q_s: [batch_size, n_heads, len_q, d_k]
        # k_s: [batch_size, n_heads, len_k, d_k]
        # v_s: [batch_size, n_heads, len_k, d_k]
        q_s = q_s.transpose((0, 2, 1, 3))  ###变成 bz  head  dmodel  dk
        k_s = k_s.transpose((0, 2, 1, 3))
        v_s = v_s.transpose((0, 2, 1, 3))

        # attn_mask的dimension需与q_s, k_s, v_s对应
        # attn_mask: [batch_size, n_heads, seq_len, seq_len]
        attn_mask = attn_mask.expand_dims(1)
        attn_mask = ops.tile(attn_mask, (1, self.n_heads, 1, 1))

        # 计算每个头的注意力分数
        # context: [batch_size, n_heads, len_q, d_k]
        # attn: [batch_size, n_heads, len_q, len_k]
        context, attn = self.attention(q_s, k_s, v_s, attn_mask)

        # concatenate
        # context: [batch_size, len_q, n_heads * d_k]
        context = context.transpose((0, 2, 1, 3)).view((batch_size, -1, self.n_heads * self.d_k))

        # 乘以W_O
        # output: [batch_size, len_q, n_heads * d_k]
        output = self.W_O(context)

        return output, attn
dmodel, dk, nheads = 10, 2, 5
q = k = v = ops.ones((1, 2, 10), mstype.float32)  ##2单词  10长度
attn_mask = Tensor([False]).broadcast_to((1, 2, 2))
multi_head_attn = MultiHeadAttention(dmodel, dk, nheads)
output, attn = multi_head_attn(q, k, v, attn_mask)
print(output.shape, attn.shape)
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:47:27.910.248 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.


(1, 2, 10) (1, 5, 2, 2)
attn_mask
Tensor(shape=[1, 2, 2], dtype=Bool, value=
[[[False, False],
  [False, False]]])
attn_mask1 = attn_mask.expand_dims(1)
attn_mask1
Tensor(shape=[1, 1, 2, 2], dtype=Bool, value=
[[[[False, False],
   [False, False]]]])
attn_mask2 = ops.tile(attn_mask1, (1, 5, 1, 1))
attn_mask2
Tensor(shape=[1, 5, 2, 2], dtype=Bool, value=
[[[[False, False],
   [False, False]],
  [[False, False],
   [False, False]],
  [[False, False],
   [False, False]],
  [[False, False],
   [False, False]],
  [[False, False],
   [False, False]]]])
#context, attn = self.attention(q_s, k_s, v_s, attn_mask)  ##可能是根据某种规则计算了 10长度的某些 掩码的位置  


from mindspore import numpy as mnp

class PositionalEncoding(nn.Cell):
    """位置编码"""

    def __init__(self, d_model, dropout_p=0.1, max_len=100):
        super().__init__()
        self.dropout = nn.Dropout(1 - dropout_p)

        # 位置信息
        # pe: [max_len, d_model]
        self.pe = ops.Zeros()((max_len, d_model), mstype.float32)

        # pos: [max_len, 1]
        # angle: [d_model/2, ]
        # pos/angle: [max len, d_model/2]
        pos = mnp.arange(0, max_len, dtype=mstype.float32).view((-1, 1))
        angle = ops.pow(10000.0, mnp.arange(0, d_model, 2, dtype=mstype.float32)/d_model)
        
        # pe: [max len, d_model]
        self.pe[:, 0::2] = ops.sin(pos/angle)
        self.pe[:, 1::2] = ops.cos(pos/angle)

    def construct(self, x):
        batch_size = x.shape[0]

        # broadcast
        # pe: [batch_size, max_len, d_model]
        pe = self.pe.expand_dims(0)
        pe = ops.broadcast_to(pe, (batch_size, -1, -1))

        # 将位置编码截取至x同等大小
        # x: [batch_size, seq_len, d_model]
        x = x + pe[:, :x.shape[1], :]
        return self.dropout(x)
x = ops.Zeros()((1, 2, 4), mstype.float32)
pe = PositionalEncoding(4)
print(pe(x))
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:53:48.481.316 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.


[[[0.         1.         0.         1.        ]
  [0.84147096 0.5403023  0.00999983 0.99995   ]]]

编码器(Encoder)

Transformer的Encoder负责处理输入的源序列,并将输入信息整合为一系列的上下文向量(context vector)输出。

每个encoder层中存在两个子层:多头自注意力(multi-head self-attention)和基于位置的前馈神经网络(position-wise feed-forward network)。

子层之间使用了残差连接(residual connection),并使用了层规范化(layer normalization)。二者统称为“Add & Norm”

encoder

基于位置的前馈神经网络 (Position-Wise Feed-Forward Network)

基于位置的前馈神经网络被用来对输入中的每个位置进行非线性变换。它由两个线性层组成,层与层之间需要经过ReLU激活函数。

F F N ( x ) = R e L U ( x W 1 + b 1 ) W 2 + b 2 \mathrm{FFN}(x) = \mathrm{ReLU}(xW_1 + b_1)W_2 + b_2 FFN(x)=ReLU(xW1+b1)W2+b2

相比固定的ReLU函数,基于位置的前馈神经网络可以处理更加复杂的关系,并且由于前馈网络是基于位置的,可以捕获到不同位置的信息,并为每个位置提供不同的转换。

class PoswiseFeedForward(nn.Cell):
    def __init__(self, d_ff, d_model, dropout_p=0.):
        super().__init__()
        self.linear1 = nn.Dense(d_model, d_ff)
        self.linear2 = nn.Dense(d_ff, d_model)
        self.dropout = nn.Dropout(1-dropout_p)
        self.relu = nn.ReLU()

    def construct(self, x):
        """前馈神经网络
        x: [batch_size, seq_len, d_model]
        """
        # x: [batch_size, seq_len, d_ff]
        x = self.linear1(x)
        x = self.relu(x)
        x = self.dropout(x)
        # x: [batch_size, seq_len, d_model]
        output = self.linear2(x)
        return output
x = ops.ones((1, 2, 4), mstype.float32)
ffn = PoswiseFeedForward(16, 4)
print(ffn(x).shape)
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:55:56.758.194 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.


(1, 2, 4)

Add & Norm

Add & Norm层本质上是残差连接后紧接了一个LayerNorm层。

Add&Norm ( x ) = LayerNorm ( x + Sublayer ( x ) ) \text{Add\&Norm}(x) = \text{LayerNorm}(x + \text{Sublayer}(x)) Add&Norm(x)=LayerNorm(x+Sublayer(x))

  • Add:残差连接,帮助缓解网络退化问题,注意需要满足 x x x SubLayer ( x ) 的形状一致 \text{SubLayer}(x)的形状一致 SubLayer(x)的形状一致
  • Norm:Layer Norm,层归一化,帮助模型更快地进行收敛;
class AddNorm(nn.Cell):
    def __init__(self, d_model, dropout_p=0.):
        super().__init__()
        self.layer_norm = nn.LayerNorm((d_model, ), epsilon=1e-5)
        self.dropout = nn.Dropout(1-dropout_p)
    
    def construct(self, x, residual):
        return self.layer_norm(self.dropout(x) + residual)
x = ops.ones((1, 2, 4), mstype.float32)
residual = ops.ones((1, 2, 4), mstype.float32)
add_norm = AddNorm(4)
print(add_norm(x, residual).shape)
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:56:31.658.630 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.


(1, 2, 4)

EncoderLayer

我们首先实现encoder中的一个层。

class EncoderLayer(nn.Cell):
    def __init__(self, d_model, n_heads, d_ff, dropout_p=0.):
        super().__init__()
        d_k = d_model // n_heads
        if d_k * n_heads != d_model:
            raise ValueError(f"The `d_model` {d_model} can not be divisible by `num_heads` {n_heads}.")
        self.enc_self_attn = MultiHeadAttention(d_model, d_k, n_heads, dropout_p)
        self.pos_ffn = PoswiseFeedForward(d_ff, d_model, dropout_p)
        self.add_norm1 = AddNorm(d_model, dropout_p)
        self.add_norm2 = AddNorm(d_model, dropout_p)
        
    def construct(self, enc_inputs, enc_self_attn_mask):
        """
        enc_inputs: [batch_size, src_len, d_model]
        enc_self_attn_mask: [batch_size, src_len, src_len]
        """
        residual = enc_inputs

        # multi-head attention
        enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask)

        # add & norm
        enc_outputs = self.add_norm1(enc_outputs, residual)
        residual = enc_outputs

        # feed-forward
        enc_outputs = self.pos_ffn(enc_outputs)

        # add & norm
        enc_outputs = self.add_norm2(enc_outputs, residual)

        return enc_outputs, attn
x = ops.ones((1, 2, 8), mstype.float32)
mask = Tensor([False]).broadcast_to((1, 2, 2))
encoder_layer = EncoderLayer(8, 4, 16)
output, attn = encoder_layer(x, mask)
print(output.shape, attn.shape)
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:59:57.449.30 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:59:57.520.09 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:59:57.559.25 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-07:59:57.595.56 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.


(1, 2, 8) (1, 4, 2, 2)

Encoder

将上面实现的encoder层堆叠n_layers次,并添加wording embedding与positional encoding。

class Encoder(nn.Cell):
    def __init__(self, src_vocab_size, d_model, n_heads, d_ff, n_layers, dropout_p=0.):
        super().__init__()
        self.src_emb = nn.Embedding(src_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model, dropout_p)
        self.layers = nn.CellList([EncoderLayer(d_model, n_heads, d_ff, dropout_p) for _ in range(n_layers)])
        self.scaling_factor = ops.Sqrt()(Tensor(d_model, mstype.float32))

        
    def construct(self, enc_inputs, src_pad_idx):
        """enc_inputs : [batch_size, src_len]
        """
        # 将输入转换为embedding,并添加位置信息
        # enc_outputs: [batch_size, src_len, d_model]
        enc_outputs = self.src_emb(enc_inputs.astype(mstype.int32))
        enc_outputs = self.pos_emb(enc_outputs * self.scaling_factor)

        # 输入的padding掩码
        # enc_self_attn_mask: [batch_size, src_len, src_len]
        enc_self_attn_mask = get_attn_pad_mask(enc_inputs, enc_inputs, src_pad_idx)

        # 堆叠encoder层
        # enc_outputs: [batch_size, src_len, d_model]
        # enc_self_attns: [batch_size, n_heads, src_len, src_len]
        enc_self_attns = []
        for layer in self.layers:
            enc_outputs, enc_self_attn = layer(enc_outputs, enc_self_attn_mask)
            enc_self_attns.append(enc_self_attn)
        return enc_outputs, enc_self_attns

解码器 (Decoder)

decoder

解码器将编码器输出的上下文序列转换为目标序列的预测结果 Y ^ \hat{Y} Y^,该输出将在模型训练中与真实目标输出 Y Y Y进行比较,计算损失。

不同于编码器,每个Decoder层中包含两层多头注意力机制,并在最后多出一个线性层,输出对目标序列的预测结果。

  • 第一层:计算目标序列的注意力分数的掩码多头自注意力
  • 第二层:用于计算上下文序列与目标序列对应关系,其中Decoder掩码多头注意力的输出作为query,Encoder的输出(上下文序列)作为key和value;

带掩码的多头注意力

在处理目标序列的输入时,t时刻的模型只能“观察”直到t-1时刻的所有词元,后续的词语不应该一并输入Decoder中。

为了保证在t时刻,只有t-1个词元作为输入参与多头注意力分数的计算,我们需要在第一个多头注意力中额外增加一个时间掩码,使目标序列中的词随时间发展逐个被暴露出来。

该注意力掩码可通过三角矩阵实现,对角线以上的词元表示为不参与注意力计算的词元,标记为1。

0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 \begin{matrix} 0 & 1 & 1 & 1 & 1\\ 0 & 0 & 1 & 1 & 1\\ 0 & 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0\\ \end{matrix} 0000010000110001110011110

该掩码一般被称作subsequent mask。

最后,将subsequent mask和padding mask合并为一个整体的掩码,确保模型既不会注意到t时刻以后的词元,也不会关注为<pad>的词元。

dec-self-attn-mask
def get_attn_subsequent_mask(seq_q, seq_k):
    """生成时间掩码,使decoder在第t时刻只能看到序列的前t-1个元素
    
    Args:
        seq_q (Tensor): query序列,shape = [batch size, len_q]
        seq_k (Tensor): key序列,shape = [batch size, len_k]
    """
    batch_size, len_q = seq_q.shape
    batch_size, len_k = seq_k.shape
    # 生成三角矩阵
    # subsequent_mask: [batch size, len_q, len_k]
    ones = ops.ones((batch_size, len_q, len_k), mindspore.float32)
    subsequent_mask = mnp.triu(ones, k=1)
    return subsequent_mask
q = k = ops.ones((1, 4), mstype.float32)  ##因为 batch_size, len_q = seq_q.shape  其实修改为 1 4 4 也可以
mask = get_attn_subsequent_mask(q, k)
print(mask)
[[[0. 1. 1. 1.]
  [0. 0. 1. 1.]
  [0. 0. 0. 1.]
  [0. 0. 0. 0.]]]

Decoder Layer

首先实现Decoder中的一个层。

class DecoderLayer(nn.Cell):
    def __init__(self, d_model, n_heads, d_ff, dropout_p=0.):
        super().__init__()
        d_k = d_model // n_heads
        if d_k * n_heads != d_model:
            raise ValueError(f"The `d_model` {d_model} can not be divisible by `num_heads` {n_heads}.")
        self.dec_self_attn = MultiHeadAttention(d_model, d_k, n_heads, dropout_p)
        self.dec_enc_attn = MultiHeadAttention(d_model, d_k, n_heads, dropout_p)
        self.pos_ffn = PoswiseFeedForward(d_ff, d_model, dropout_p)
        self.add_norm1 = AddNorm(d_model, dropout_p)
        self.add_norm2 = AddNorm(d_model, dropout_p)
        self.add_norm3 = AddNorm(d_model, dropout_p)
        
    def construct(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
        """
        dec_inputs: [batch_size, trg_len, d_model]
        enc_outputs: [batch_size, src_len, d_model]
        dec_self_attn_mask: [batch_size, trg_len, trg_len]
        dec_enc_attn_mask: [batch_size, trg_len, src_len]
        """
        residual = dec_inputs
    
        # decoder multi-head attention
        dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)

        # add & norm
        dec_outputs = self.add_norm1(dec_outputs, residual)
        residual = dec_outputs

        # encoder-decoder multi-head attention        
        dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)## dec_outputs作为Q enc作为KV

        # add & norm
        dec_outputs = self.add_norm2(dec_outputs, residual)
        residual = dec_outputs

        # feed-forward
        dec_outputs = self.pos_ffn(dec_outputs)

        # add & norm
        dec_outputs = self.add_norm3(dec_outputs, residual)

        return dec_outputs, dec_self_attn, dec_enc_attn
x = y = ops.ones((1, 2, 4), mstype.float32)
mask1 = mask2 = Tensor([False]).broadcast_to((1, 2, 2))
decoder_layer = DecoderLayer(4, 1, 16)  ## d_model, n_heads, d_ff,
output, attn1, attn2 = decoder_layer(x, y, mask1, mask2)
print(output.shape, attn1.shape, attn2.shape)
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-08:13:42.292.865 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-08:13:42.304.560 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-08:13:42.311.160 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-08:13:42.315.077 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-08:13:42.318.475 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.
[WARNING] ME(6511:281472949233968,MainProcess):2024-06-29-08:13:42.321.795 [mindspore/nn/layer/basic.py:173] For Dropout, this parameter `keep_prob` will be deprecated, please use `p` instead.


(1, 2, 4) (1, 1, 2, 2) (1, 1, 2, 2)

Decoder

将上面实现的DecoderLayer堆叠n_layer次,添加word embedding与positional encoding,以及最后的线性层。

输出的dec_outputs为对目标序列的预测。

class Decoder(nn.Cell):
    def __init__(self, trg_vocab_size, d_model, n_heads, d_ff, n_layers, dropout_p=0.):
        super().__init__()
        self.trg_emb = nn.Embedding(trg_vocab_size, d_model)
        self.pos_emb = PositionalEncoding(d_model, dropout_p)
        self.layers = nn.CellList([DecoderLayer(d_model, n_heads, d_ff) for _ in range(n_layers)])
        self.projection = nn.Dense(d_model, trg_vocab_size)
        self.scaling_factor = ops.Sqrt()(Tensor(d_model, mstype.float32))      
        
    def construct(self, dec_inputs, enc_inputs, enc_outputs, src_pad_idx, trg_pad_idx):
        """
        dec_inputs: [batch_size, trg_len]
        enc_inputs: [batch_size, src_len]
        enc_outputs: [batch_size, src_len, d_model]
        """
        # 将输入转换为Embedding,并添加位置信息
        # dec_outputs: [batch_size, trg_len, d_model]
        dec_outputs = self.trg_emb(dec_inputs.astype(mstype.int32))
        dec_outputs = self.pos_emb(dec_outputs * self.scaling_factor)

        # decoder中自注意力的掩码
        # dec_self_attn_mask: [batch_size, trg_len, trg_len]
        dec_self_attn_pad_mask = get_attn_pad_mask(dec_inputs, dec_inputs, trg_pad_idx)
        dec_self_attn_subsequent_mask = get_attn_subsequent_mask(dec_inputs, dec_inputs)
        dec_self_attn_mask = ops.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)

        # encoder-decoder中的注意力padding掩码
        # dec_enc_attn_mask: [batch_size, trg_len, src_len]
        dec_enc_attn_mask = get_attn_pad_mask(dec_inputs, enc_inputs, src_pad_idx)

        # 堆叠decoder层
        # dec_outputs: [batch_size, trg_len, d_model]
        dec_self_attns, dec_enc_attns = [], []
        for layer in self.layers:
            dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask)
            dec_self_attns.append(dec_self_attn)
            dec_enc_attns.append(dec_enc_attn)

        # 线性层
        # dec_outputs: [batch_size, trg_len, trg_vocab_size]
        dec_outputs = self.projection(dec_outputs)
        return dec_outputs, dec_self_attns, dec_enc_attns

Transformer

将实现的Encoder与Decoder组合起来。

class Transformer(nn.Cell):
    def __init__(self, encoder, decoder):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        
    def construct(self, enc_inputs, dec_inputs, src_pad_idx, trg_pad_idx):
        """
        enc_inputs: [batch_size, src_len]
        dec_inputs: [batch_size, trg_len]
        """
        # encoder,输出表示源序列信息tensor
        # enc_ouputs: [batch_size, src_len, d_model]
        enc_outputs, enc_self_attns = self.encoder(enc_inputs, src_pad_idx)

        # decoder
        # de_outputs: [batch_size, trg_len, trg_vocab_size]
        dec_outputs, dec_self_attns, dec_enc_attns = self.decoder(dec_inputs, enc_inputs, enc_outputs, src_pad_idx, trg_pad_idx)

        # decoder logits
        # dec_logits: [batch_size * trg_len, trg_vocab_size]
        dec_logits = dec_outputs.view((-1, dec_outputs.shape[-1]))

        return dec_logits, enc_self_attns, dec_self_attns, dec_enc_attns
        

通过Transformer实现文本机器翻译

全流程

  • 数据预处理: 将图像、文本等数据处理为可以计算的Tensor
  • 模型构建: 使用框架API, 搭建模型
  • 模型训练: 定义模型训练逻辑, 遍历训练集进行训练
  • 模型评估: 使用训练好的模型, 在测试集评估效果
  • 模型推理: 将训练好的模型部署, 输入新数据获得预测结果

数据准备

我们本次使用的数据集为Multi30K数据集,它是一个大规模的图像-文本数据集,包含30K+图片,每张图片对应两类不同的文本描述:

  • 英语描述,及对应的德语翻译;
  • 五个独立的、非翻译而来的英语和德语描述,描述中包含的细节并不相同;

因其收集的不同语言对于图片的描述相互独立,所以训练出的模型可以更好地适用于有噪声的多模态内容。

multi30k
> 图片来源:Elliott, D., Frank, S., Sima’an, K., & Specia, L. (2016). Multi30K: Multilingual English-German Image Descriptions. CoRR, 1605.00459.

在本次文本翻译任务中,德语是源语言(source languag),英语是目标语言(target language)。

数据下载模块

使用download进行数据下载,并将tar.gz文件解压到指定文件夹。

from torchtext.datasets import multi30k

multi30k.URL["train"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz"
multi30k.URL["valid"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz"
multi30k.URL["test"] = "https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/mmt16_task1_test.tar.gz"

multi30k.MD5["train"] = "20140d013d05dd9a72dfde46478663ba05737ce983f478f960c1123c6671be5e"
multi30k.MD5["valid"] = "a7aa20e9ebd5ba5adce7909498b94410996040857154dab029851af3a866da8c"
multi30k.MD5["test"] = "6d1ca1dba99e2c5dd54cae1226ff11c2551e6ce63527ebb072a1f70f72a5cd36"

https://discuss.pytorch.org/
#train_path '/home/nginx/.mindspore_examples/train'
'/home/nginx/.mindspore_examples/train'
!wget -c -t 0 https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz
--2024-06-29 08:52:16--  https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.108.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... failed: Connection timed out.
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... failed: Connection timed out.
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... 
!wget -c -t 0 https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz
!wget -c -t 0 https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz
!wget -c -t 0https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/mmt16_task1_test.tar.gz -O mmt_task1_test2016.tar.gz
from download import download
from pathlib import Path
from tqdm import tqdm
import os

# 训练、验证、测试数据集下载地址
urls = {
    'train': 'https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/training.tar.gz',
    'valid': 'https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz',
    'test': 'https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/mmt16_task1_test.tar.gz'
}

# 指定保存路径为 `home_path/.mindspore_examples`
cache_dir = Path.home() / '.mindspore_examples'

train_path = download(urls['train'], os.path.join(cache_dir, 'train'), kind='tar.gz')
valid_path = download(urls['valid'], os.path.join(cache_dir, 'valid'), kind='tar.gz')
#test_path = download(urls['test'], os.path.join(cache_dir, 'test'), kind='tar.gz')
Replace is False and data exists, so doing nothing. Use replace=True to re-download the data.
Creating data folder...



---------------------------------------------------------------------------

OSError                                   Traceback (most recent call last)

File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:1346, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1345 try:
-> 1346     h.request(req.get_method(), req.selector, req.data, headers,
   1347               encode_chunked=req.has_header('Transfer-encoding'))
   1348 except OSError as err: # timeout error


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1285, in HTTPConnection.request(self, method, url, body, headers, encode_chunked)
   1284 """Send a complete request to the server."""
-> 1285 self._send_request(method, url, body, headers, encode_chunked)


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1331, in HTTPConnection._send_request(self, method, url, body, headers, encode_chunked)
   1330     body = _encode(body, 'body')
-> 1331 self.endheaders(body, encode_chunked=encode_chunked)


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1280, in HTTPConnection.endheaders(self, message_body, encode_chunked)
   1279     raise CannotSendHeader()
-> 1280 self._send_output(message_body, encode_chunked=encode_chunked)


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1040, in HTTPConnection._send_output(self, message_body, encode_chunked)
   1039 del self._buffer[:]
-> 1040 self.send(msg)
   1042 if message_body is not None:
   1043 
   1044     # create a consistent interface to message_body


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:980, in HTTPConnection.send(self, data)
    979 if self.auto_open:
--> 980     self.connect()
    981 else:


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1447, in HTTPSConnection.connect(self)
   1445 "Connect to a host on a given (SSL) port."
-> 1447 super().connect()
   1449 if self._tunnel_host:


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:946, in HTTPConnection.connect(self)
    945 """Connect to the host and port specified in __init__."""
--> 946 self.sock = self._create_connection(
    947     (self.host,self.port), self.timeout, self.source_address)
    948 # Might fail in OSs that don't implement TCP_NODELAY


File ~/miniconda/envs/jupyter/lib/python3.9/socket.py:844, in create_connection(address, timeout, source_address)
    843 try:
--> 844     raise err
    845 finally:
    846     # Break explicitly a reference cycle


File ~/miniconda/envs/jupyter/lib/python3.9/socket.py:832, in create_connection(address, timeout, source_address)
    831     sock.bind(source_address)
--> 832 sock.connect(sa)
    833 # Break explicitly a reference cycle


OSError: [Errno 99] Cannot assign requested address


During handling of the above exception, another exception occurred:


URLError                                  Traceback (most recent call last)

File ~/miniconda/envs/jupyter/lib/python3.9/site-packages/download/download.py:208, in _fetch_file(url, file_name, resume, hash_, timeout, progressbar, verbose)
    207 req = request_agent(url)
--> 208 u = urllib.request.urlopen(req, timeout=timeout)
    209 u.close()


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:214, in urlopen(url, data, timeout, cafile, capath, cadefault, context)
    213     opener = _opener
--> 214 return opener.open(url, data, timeout)


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:517, in OpenerDirector.open(self, fullurl, data, timeout)
    516 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method())
--> 517 response = self._open(req, data)
    519 # post-process response


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:534, in OpenerDirector._open(self, req, data)
    533 protocol = req.type
--> 534 result = self._call_chain(self.handle_open, protocol, protocol +
    535                           '_open', req)
    536 if result:


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:494, in OpenerDirector._call_chain(self, chain, kind, meth_name, *args)
    493 func = getattr(handler, meth_name)
--> 494 result = func(*args)
    495 if result is not None:


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:1389, in HTTPSHandler.https_open(self, req)
   1388 def https_open(self, req):
-> 1389     return self.do_open(http.client.HTTPSConnection, req,
   1390         context=self._context, check_hostname=self._check_hostname)


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:1349, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1348 except OSError as err: # timeout error
-> 1349     raise URLError(err)
   1350 r = h.getresponse()


URLError: <urlopen error [Errno 99] Cannot assign requested address>


During handling of the above exception, another exception occurred:


RuntimeError                              Traceback (most recent call last)

Cell In[30], line 17
     14 cache_dir = Path.home() / '.mindspore_examples'
     16 train_path = download(urls['train'], os.path.join(cache_dir, 'train'), kind='tar.gz')
---> 17 valid_path = download(urls['valid'], os.path.join(cache_dir, 'valid'), kind='tar.gz')
     18 test_path = download(urls['test'], os.path.join(cache_dir, 'test'), kind='tar.gz')


File ~/miniconda/envs/jupyter/lib/python3.9/site-packages/download/download.py:95, in download(url, path, kind, progressbar, replace, timeout, verbose)
     93 path_temp = _TempDir()
     94 path_temp_file = op.join(path_temp, "tmp.{}".format(kind))
---> 95 _fetch_file(
     96     download_url,
     97     path_temp_file,
     98     timeout=timeout,
     99     verbose=verbose,
    100     progressbar=progressbar,
    101 )
    103 # Unzip the file to the out path
    104 if verbose:


File ~/miniconda/envs/jupyter/lib/python3.9/site-packages/download/download.py:277, in _fetch_file(url, file_name, resume, hash_, timeout, progressbar, verbose)
    275     shutil.move(temp_file_name, file_name)
    276 except Exception as ee:
--> 277     raise RuntimeError(
    278         "Error while fetching file %s."
    279         " Dataset fetching aborted.\nError: %s" % (url, ee)
    280     )


RuntimeError: Error while fetching file https://raw.githubusercontent.com/neychev/small_DL_repo/master/datasets/Multi30k/validation.tar.gz. Dataset fetching aborted.
Error: <urlopen error [Errno 99] Cannot assign requested address>
test_path
# from download import download
# from pathlib import Path
# from tqdm import tqdm
# import os

# # 训练、验证、测试数据集下载地址
# urls = {
#     'train': 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz',
#     'valid': 'http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz',
#     'test': 'http://www.quest.dcs.shef.ac.uk/wmt17_files_mmt/mmt_task1_test2016.tar.gz'
# }

# # 指定保存路径为 `home_path/.mindspore_examples`
# cache_dir = Path.home() / '.mindspore_examples'

# train_path = download(urls['train'], os.path.join(cache_dir, 'train'), kind='tar.gz')
# valid_path = download(urls['valid'], os.path.join(cache_dir, 'valid'), kind='tar.gz')
# test_path = download(urls['test'], os.path.join(cache_dir, 'test'), kind='tar.gz')
Creating data folder...



---------------------------------------------------------------------------

timeout                                   Traceback (most recent call last)

File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:1346, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1345 try:
-> 1346     h.request(req.get_method(), req.selector, req.data, headers,
   1347               encode_chunked=req.has_header('Transfer-encoding'))
   1348 except OSError as err: # timeout error


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1285, in HTTPConnection.request(self, method, url, body, headers, encode_chunked)
   1284 """Send a complete request to the server."""
-> 1285 self._send_request(method, url, body, headers, encode_chunked)


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1331, in HTTPConnection._send_request(self, method, url, body, headers, encode_chunked)
   1330     body = _encode(body, 'body')
-> 1331 self.endheaders(body, encode_chunked=encode_chunked)


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1280, in HTTPConnection.endheaders(self, message_body, encode_chunked)
   1279     raise CannotSendHeader()
-> 1280 self._send_output(message_body, encode_chunked=encode_chunked)


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:1040, in HTTPConnection._send_output(self, message_body, encode_chunked)
   1039 del self._buffer[:]
-> 1040 self.send(msg)
   1042 if message_body is not None:
   1043 
   1044     # create a consistent interface to message_body


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:980, in HTTPConnection.send(self, data)
    979 if self.auto_open:
--> 980     self.connect()
    981 else:


File ~/miniconda/envs/jupyter/lib/python3.9/http/client.py:946, in HTTPConnection.connect(self)
    945 """Connect to the host and port specified in __init__."""
--> 946 self.sock = self._create_connection(
    947     (self.host,self.port), self.timeout, self.source_address)
    948 # Might fail in OSs that don't implement TCP_NODELAY


File ~/miniconda/envs/jupyter/lib/python3.9/socket.py:844, in create_connection(address, timeout, source_address)
    843 try:
--> 844     raise err
    845 finally:
    846     # Break explicitly a reference cycle


File ~/miniconda/envs/jupyter/lib/python3.9/socket.py:832, in create_connection(address, timeout, source_address)
    831     sock.bind(source_address)
--> 832 sock.connect(sa)
    833 # Break explicitly a reference cycle


timeout: timed out


During handling of the above exception, another exception occurred:


URLError                                  Traceback (most recent call last)

File ~/miniconda/envs/jupyter/lib/python3.9/site-packages/download/download.py:208, in _fetch_file(url, file_name, resume, hash_, timeout, progressbar, verbose)
    207 req = request_agent(url)
--> 208 u = urllib.request.urlopen(req, timeout=timeout)
    209 u.close()


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:214, in urlopen(url, data, timeout, cafile, capath, cadefault, context)
    213     opener = _opener
--> 214 return opener.open(url, data, timeout)


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:517, in OpenerDirector.open(self, fullurl, data, timeout)
    516 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method())
--> 517 response = self._open(req, data)
    519 # post-process response


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:534, in OpenerDirector._open(self, req, data)
    533 protocol = req.type
--> 534 result = self._call_chain(self.handle_open, protocol, protocol +
    535                           '_open', req)
    536 if result:


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:494, in OpenerDirector._call_chain(self, chain, kind, meth_name, *args)
    493 func = getattr(handler, meth_name)
--> 494 result = func(*args)
    495 if result is not None:


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:1375, in HTTPHandler.http_open(self, req)
   1374 def http_open(self, req):
-> 1375     return self.do_open(http.client.HTTPConnection, req)


File ~/miniconda/envs/jupyter/lib/python3.9/urllib/request.py:1349, in AbstractHTTPHandler.do_open(self, http_class, req, **http_conn_args)
   1348 except OSError as err: # timeout error
-> 1349     raise URLError(err)
   1350 r = h.getresponse()


URLError: <urlopen error timed out>


During handling of the above exception, another exception occurred:


RuntimeError                              Traceback (most recent call last)

Cell In[27], line 16
     13 # 指定保存路径为 `home_path/.mindspore_examples`
     14 cache_dir = Path.home() / '.mindspore_examples'
---> 16 train_path = download(urls['train'], os.path.join(cache_dir, 'train'), kind='tar.gz')
     17 valid_path = download(urls['valid'], os.path.join(cache_dir, 'valid'), kind='tar.gz')
     18 test_path = download(urls['test'], os.path.join(cache_dir, 'test'), kind='tar.gz')


File ~/miniconda/envs/jupyter/lib/python3.9/site-packages/download/download.py:95, in download(url, path, kind, progressbar, replace, timeout, verbose)
     93 path_temp = _TempDir()
     94 path_temp_file = op.join(path_temp, "tmp.{}".format(kind))
---> 95 _fetch_file(
     96     download_url,
     97     path_temp_file,
     98     timeout=timeout,
     99     verbose=verbose,
    100     progressbar=progressbar,
    101 )
    103 # Unzip the file to the out path
    104 if verbose:


File ~/miniconda/envs/jupyter/lib/python3.9/site-packages/download/download.py:277, in _fetch_file(url, file_name, resume, hash_, timeout, progressbar, verbose)
    275     shutil.move(temp_file_name, file_name)
    276 except Exception as ee:
--> 277     raise RuntimeError(
    278         "Error while fetching file %s."
    279         " Dataset fetching aborted.\nError: %s" % (url, ee)
    280     )


RuntimeError: Error while fetching file http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz. Dataset fetching aborted.
Error: <urlopen error timed out>
print("yangge  mindspore 打卡第九天  trainsformer之encoder和decoder部分 2024-06-29")
yangge  mindspore 打卡第九天  trainsformer之encoder和decoder部分 2024-06-29

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1876646.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何修改PDF文档的作者名称?

要修改一个 PDF 文档的作者名称&#xff0c;你可以按照以下步骤进行操作&#xff1a; 1. **使用 Adobe Acrobat**&#xff08;如果有&#xff09;&#xff1a; - Adobe Acrobat 是一个功能强大的 PDF 编辑工具&#xff0c;支持修改文档属性信息&#xff0c;包括作者名称。打开…

SSRF一篇文章实战举例全面学懂

前言 Gopher协议在SSRF漏洞中的深入研究&#xff08;附视频讲解&#xff09; - 知乎 (zhihu.com) 上面这篇文章真的写的很好&#xff0c;是目前看过最好的将SSRF(服务端请求伪造)和Gopher协议的内容。 然后这种题型&#xff0c;我记得在之前的文章&#xff0c;金砖里有个云启…

Python 面试【★★★】

欢迎莅临我的博客 &#x1f49d;&#x1f49d;&#x1f49d;&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

HIVE每日一题

select * from sku_info order by sku_id ; 为什么结果没有顺序排序。什么原因导致的&#xff1f;

第二十一课,列表的操作函数

一&#xff0c;len(列表):求列表的长度 当你需要知道一个列表中含有多少个元素时&#xff0c;可以使用len()函数&#xff0c;将列表的变量名放入len()函数的括号中&#xff0c;它将告诉你这个列表中有多少个元素&#xff0c;也就是它的长度&#xff01; 需要注意的是&#xf…

电脑文件夹里的表格删除了怎样恢复?别急,可这样做

在日常工作中&#xff0c;我们经常会使用到各种电子表格来记录、整理和分析数据。然而&#xff0c;有时由于操作失误或其他原因&#xff0c;我们可能会不小心将电脑文件夹中的重要表格删除。面对这种情况&#xff0c;许多人可能会感到惊慌失措&#xff0c;担心数据丢失会给工作…

试析C#编程语言的特点及功能

行步骤&#xff0c;而不必创建新方法。其声明方法是在实例化委托基础上&#xff0c;加一对花括号以代表执行范围&#xff0c;再加一个分号终止语句。 2.3.3 工作原理 C#编译器在“匿名”委托时会自动把执行代码转换成惟一命名类里的惟一命名函数。再对存储代码块的委托进行设…

吉时利 Keithley2470 图形数字源表

Keithley2470吉时利图形SMU数字源表 2470 型图形化高压 SourceMeter SMU 2470 高压 SMU 凭借其 1100V 和 10fA 能力&#xff0c;经优化用于检定和测试高电压、低泄漏器件、材料和模块&#xff0c;如碳化硅 (SiC)、氮化镓(GaN)、功率 MOSFET、瞬态抑制器件、电路保护器件、功率…

5个大气的wordpress付费主题

Sesko赛斯科wordpress外贸主题 适合用于重型机械设备公司建外贸官方网站的橙红色wordpress外贸主题。 https://www.jianzhanpress.com/?p5886 Polar钋啦wordpress外贸主题 制造业wordpress网站模板&#xff0c;适合生产制造企业官方网站使用的wordpress外贸主题。 https:/…

【新能源汽车-电控】控制芯片、电机控制、电机结构、硬件相关、通讯协议、操作系统、上位机、C语言汇总

【新能源汽车-电控】控制芯片、电机控制、电机结构、硬件相关、通讯协议、操作系统、上位机、C语言汇总 文章目录 前言一、控制芯片二、电机控制三、电机结构三、硬件相关四、通讯协议五、操作系统六、上位机七、C语言总结 前言 提示&#xff1a;以下是本篇文章正文内容&#…

构建 Audio Unit 应用程序

构建 Audio Unit 应用程序 构建 Audio Unit 应用程序从选择设计模式开始I/O Pass ThroughI/O Without a Render Callback FunctionI/O with a Render Callback FunctionOutput-Only with a Render Callback Function其他设计模式 构建应用程序配置 audio session指定 audio uni…

分享一个导出数据到 Excel 的解决方案

前言 许多业务场景下需要处理和分析大量的数据&#xff0c;而 Excel 是广泛使用的文件格式&#xff0c;几乎所有人都能打开和查看 Excel 文件&#xff0c;因此将数据库中的原始数据处理后&#xff0c;导出到 Excel 是一个很常见的功能&#xff0c;对于数据管理、分析、备份、展…

汽车电子工程师入门系列——CAN 规范系列通读

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

【一生一芯】笔记

文章目录 一级目录二级目录三级目录缓存的验证 一级目录 二级目录 三级目录 缓存的验证

c++习题04-忙碌的工人

目录 一&#xff0c;问题 二&#xff0c;思路 1&#xff0c;图形 2&#xff0c;分析 3&#xff0c;伪代码 三&#xff0c;代码 一&#xff0c;问题 二&#xff0c;思路 1&#xff0c;图形 根据题目&#xff0c;绘制出来的图形如下&#x1f447; 之后再绘制甲经过楼梯…

Hadoop 安装与伪分布的搭建

目录 1 SSH免密登录 1.1 修改主机名称 1.2 修改hosts文件 1.3 创建hadoop用户 1.4 生成密钥对免密登录 2 搭建hadoop环境与jdk环境 2.1 将下载好的压缩包进行解压 2.2 编写hadoop环境变量脚本文件 2.3 修改hadoop配置文件&#xff0c;指定jdk路径 2.4 查看环境是否搭建完成 3 …

文华财经通达信同花顺期货通盘立方博易大师主图指标公式源码

买线:EMA(C,2); 卖线:EMA(SLOPE(C,21)*20C,42); BU:CROSS(买线,卖线); SEL:CROSS(卖线,买线); STICKLINE1(买线>卖线,LOW,MIN(O,C),0.1,1),COLORRED; STICKLINE1(买线>卖线,MAX(O,C),HIGH,0.1,1),COLORRED; STICKLINE(买线>卖线,CLOSE,OPEN,8,1),COLORRED; STI…

解锁iCloud的全能潜力:从新手到专家的终极指南!

在今天这个数字化日益发达的时代&#xff0c;云服务已经成为我们生活中不可或缺的一部分。苹果公司的iCloud服务&#xff0c;作为一个集成的云服务平台&#xff0c;为用户提供了数据存储、备份、同步等多样化的功能。通过本文&#xff0c;我们将深入探讨如何高效利用iCloud&…

itext生成pdf文件demo示例

需求 在PDF文件中植入一些信息&#xff08;pdf模版&#xff09; 制作模版 可以看到下面红色箭头标注位置&#xff0c;这都是我们需要动态写入数据的表单域&#xff0c;可以使用wps等工具来制作 点击编辑表单&#xff0c;可以给对应空间添加表单域&#xff0c;表单域名称是ke…

【React】代码简化与拓展安装

安装如下拓展&#xff1a; 只需敲击rcc即可搭建框架