cartographer从入门到精通(一):cartographer介绍

news2025/1/9 15:03:08

一、cartographer重要文档

有关cartographer的资料有2个比较重要的网站,我们的介绍也是基于这两个网站,其中会加入自己的一些理解,后续也有一些对代码的修改,来实现我们想完善的功能。

1-Cartographer
2-Cartographer ROS
第1个是Cartographer的核心,它会编译成一个库文件供他人使用
第2个是作者写了个ros包来调用Cartographer的核心库来实现建图、导航的便捷展示。

二、Cartographer的安装

Cartographer是一个SLAM系统,它提供了2D和3D激光的建图功能,并支持多种平台和多种传感器配置。

技术概述
  • Cartographer的架构图
  • 在这里插入图片描述

我们可以看到白色框出来的三个区域,分别是

  • Input Sensor Data(数据输入模块)
  • Local SLAM(局部SLAM模块)
  • Global SLAM (background thread)(全局SLAM模块)

下面我们分别介绍一下这几个模块

Input Sensor Data(数据输入模块)

数据输入模块可以接收激光雷达(Range Data)、电机编码器(Odometry Pose)、陀螺仪(IMU Data)、还有固定坐标系位姿(Fixed Frame Pose)数据,这里的固定坐标系位姿(Fixed Frame Pose)数据在代码中有注释提到是GPS数据,其实也可以是其他类似GPS信号的数据源,顾名思义只要是固定坐标系下的位姿数据就可以。
如激光雷达:
在这里插入图片描述
如电机
在这里插入图片描述
如陀螺仪
在这里插入图片描述
以上品牌只作为参考,具体应用需要适配合适的传感器。

Local SLAM(局部SLAM模块)

输入的一帧一帧激光数据通过Scan Matching进行匹配,然后传给后端进行回环检测和优化,但是如果所有激光帧数据都传给后端,那计算量会非常大,而且很多是冗余的数据,所以算法要对数据进行筛选和过滤,Motion Filter就是做这个功能的,Motion Filter通过检测距离、角度、时间的变化来进行过滤传入后端的激光帧数据,比如上一帧激光与当前帧激光的距离变化大于0.1米、或者角度变化大于1度、或者时间间隔大于1秒,才会把数据帧传入后端,不满足要求的就会被丢弃(Dropped)。最后传入后端的激光帧会生成一个叫做Submap(子图)的数据结构。

Global SLAM (background thread)(全局SLAM模块)

以为Local SLAM会存在局部累计误差,所以需要Global SLAM来解决这个问题,解决的方式就是通过构建的各种约束进行优化来实现,所以这个模块首先要构建约束(主要包括INTRA和INTER两种约束,我们后面再来解释),构建完约束,接着就要进行优化了,Sparse Pose Adjustment就是来进行优化的。优化完成后累计误差就会被消除,同时之前有误差的位姿也会被调整,所以新进来的数据就要在此基础上进行调整,所以作者说Extrapolate all poses that were added later(推断后面添加进来的位姿)

局部SLAM会带来的累计误差,后端优化可以纠正累计误差:
在这里插入图片描述

其他模块
  • Voxel Filter(fixed size)(体素过滤)
  • Adaptive Voxel Filter(自适应体素过滤)
  • PoseExtrapolator(位姿推断器)
  • IMU Tracker(gravity alignment)(IMU跟踪器)
  • InsertionResult(传入后端时封装的一种数据结构,包含所有输入的数据)
Voxel Filter(fixed size)(体素过滤)

由于输入的激光数据比较密集,实际上我们用不到那么多数据,所以Voxel Filter的作用就是下采样,用来减少数据输入。fixed size代表下采样的间隔是固定的,这个数值可以自己设置。

Adaptive Voxel Filter(自适应体素过滤)

与Voxel Filter不同,Adaptive Voxel Filter是自适应的算法,就是在满足足够的点数据数量为前提,通过自适应调整采样间隔来实现这个目标。目的是在满足匹配精度要求为前提,使用尽量少的数据,这样也可以减少激光匹配时的计算量。

PoseExtrapolator(位姿推断器)

这个类是用来做位姿推断的,顾名思义他的作用就是用来推断位姿的,具体使用的数据有激光位姿、imu数据、odom数据。这个类可以精确到每一帧的位姿推断,所以在cartographer中也用来矫正初始激光数据的运动畸变,非常重要。

IMU Tracker(gravity alignment)(IMU跟踪器)

IMU Tracker是用来做imu的位姿跟踪的,用来辅助PoseExtrapolator进行位姿推断。

InsertionResult

作为传入后端时封装的一种数据结构,InsertionResult包含所有输入的数据,用来进行后端的优化。

开始使用

Cartographer是一个独立的C++库,如果想快速使用,建议使用ROS整合的应用

使用ROS整合的应用

ROS整合的代码可以在这里下载Cartographer ROS repository,您还可以在这里Cartographer ROS Read the Docs site找到关于此应用的完整文档。

编译Cartographer库

以 Ubuntu 18.04 为例

# Install the required libraries that are available as debs.
sudo apt-get update
sudo apt-get install -y \
    clang \
    cmake \
    g++ \
    git \
    google-mock \
    libboost-all-dev \
    libcairo2-dev \
    libceres-dev \
    libcurl4-openssl-dev \
    libeigen3-dev \
    libgflags-dev \
    libgoogle-glog-dev \
    liblua5.2-dev \
    libsuitesparse-dev \
    lsb-release \
    ninja-build \
    python3-sphinx \
    stow

# Install Protocol Buffers and Abseil if available.
# No need to build it ourselves.
case "$(lsb_release -sc)" in
    jammy|bullseye)
        sudo apt-get install -y libgmock-dev protobuf-compiler libabsl-dev ;;
    focal|buster)
        sudo apt-get install -y libgmock-dev protobuf-compiler ;;
    bionic)
        ;;
esac
git clone https://github.com/abseil/abseil-cpp.git
cd abseil-cpp
git checkout 215105818dfde3174fe799600bb0f3cae233d0bf # 20211102.0
mkdir build
cd build
cmake -G Ninja \
  -DCMAKE_BUILD_TYPE=Release \
  -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
  -DCMAKE_INSTALL_PREFIX=/usr/local/stow/absl \
  ..
ninja
sudo ninja install
cd /usr/local/stow
sudo stow absl
VERSION="v3.4.1"

# Build and install proto3.
git clone https://github.com/google/protobuf.git
cd protobuf
git checkout tags/${VERSION}
mkdir build
cd build
cmake -G Ninja \
  -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
  -DCMAKE_BUILD_TYPE=Release \
  -Dprotobuf_BUILD_TESTS=OFF \
  ../cmake
ninja
sudo ninja install
# Build and install Cartographer.
cd cartographer
mkdir build
cd build
cmake .. -G Ninja
ninja
CTEST_OUTPUT_ON_FAILURE=1 ninja test
sudo ninja install
系统要求

尽管Cartographer也可能运行在其他系统上,但是只在满足以下要求的系统上进行过验证。

已知的问题

32位系统上的eigen库有对齐问题,会导致系统内存冲突。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1876256.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 面试【★★★★★】

欢迎莅临我的博客 💝💝💝,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

STM32第九课:DHT11温湿度传感器

文章目录 需求一、DHT11温湿度传感器二、模块配置流程1.配置时钟和IO2.读取数据3.数据处理 三、导入语音模块四、关键代码总结 需求 1.完成DHT11温湿度检测模块的配置。 2.处理DHT11获取的数据,在串口打印处理后的实时数据。 2.通过Su-03t语音识别模块实现实时温湿…

WLAN 4-Way Handshake如何生成GTK?

关于Wi-Fi的加密认证过程,可以参考如下链接,今天我们来理解如何生成GTK。 WLAN数据加密机制_tls加密wifi-CSDN博客 1 GTK GTK(Group Temporal Key)是由AP通过GMK生成,长度为128位,并在四次握手的第三步中…

哈尔滨高校大学智能制造实验室数字孪生可视化系统平台项目的验收

哈尔滨高校大学智能制造实验室数字孪生可视化系统平台项目的验收,标志着这一技术在教育领域的应用取得了新的突破。项目旨在开发一个数字孪生可视化系统平台,用于哈尔滨高校大学智能制造实验室的设备模拟、监测与数据分析。项目的主要目标包括&#xff1…

数据结构_线性表

线性表的定义和特点 线性表是具有相同特性的数据元素的一个有限序列 :线性起点/起始节点 :的直接前驱 :的直接后继 :线性终点/终端节点 n:元素总个数,表长 下标:是元素的序号,表示元素在表中的位置 n0时称为空表 线性表 由n(n>0)个数据元素(结点),组成的有限序列 将…

Quantlab5.0:一切围绕可实盘策略驱动开发

原创文章第573篇,专注“AI量化投资、世界运行的规律、个人成长与财富自由"。 2024年上半年即将结束,开始准备星球下半年的工作。 目前设想的——Quantlab5.0,之所以升级一个大版本,与4.x有很大不同。 5.0专注策略开发&…

负载均衡器有什么用?

负载均衡器有什么用? 负载均衡器是一种在多个服务器之间分配网络或应用程序流量的设备或软件应用程序。其主要目的是确保没有一台服务器承担过多的需求,从而提高应用程序的响应速度和可用性。 在计算机发展的早期,负载均衡是一个手动过程。…

【Sublime】Sublime Text 中运行终端

Sublime Text 本身并不是一个终端仿真器,可以使用插件来在 Sublime Text 中集成终端功能。最常用的插件之一是“Terminal”。 使用“Terminal”插件在 Sublime Text 中启动终端 以下是安装和使用该插件的步骤: 安装 Package Control: 如果你…

【自动驾驶汽车通讯协议】深入理解PCI Express(PCIe)技术

文章目录 0. 前言1. PCIe简介1.1 PCIe外观1.2 PCIe的技术迭代 2. PCIe的通道(lane)配置2.1 通道配置详解2.2 通道配置的影响 3. PCIe的架构3.1 架构层次3.2 核心组件 4. PCIe的特性5. PCIe在自动驾驶中的应用 0. 前言 按照国际惯例,首先声明&…

mybatis框架介绍 , 环境的搭建和代码实现

1.mybatis框架介绍 mybatis框架介绍 mybatis是Apache软件基金会下的一个开源项目,前身是iBatis框架。2010年这个项目由apache 软件基金会迁移到google code下,改名为mybatis。2013年11月又迁移到了github(GitHub 是一个面向开源及私有 软件项目的托管平…

40V 60V 80V 100V 400V高压LDO三端稳压器选择,技术参数

40V 60V 80V 100V 400V高压LDO三端稳压器选择,技术参数

基于yolo的物体识别坐标转换

一、模型简介: 1.1、小孔成像模型简图如下:不考虑实际相机中存在的场曲、畸变等问题 相对关系为: 为了表述与研究的方便,我们将像面至于小孔之前,且到小孔的距离仍然是焦距f,这样的模型与原来的小孔模型是等价的 相对关系为: 二、坐标系简介: **世界坐标系(world coo…

Qt中用QLabel创建状态灯

首先ui设计中分别创建了4个大灯和4个小灯。 编辑.h文件 #ifndef LED_H #define LED_H#include <QWidget> #include <QLabel>QT_BEGIN_NAMESPACE namespace Ui { class Led; } QT_END_NAMESPACEclass Led : public QWidget {Q_OBJECTpublic:Led(QWidget *parent n…

今天天气正好,开锐界L去追风

早就想开着它来个惬意的自驾游&#xff0c;结果因为工作原因一直在忙东忙西&#xff0c;锐界L这车都是上下班代步使用&#xff0c;今天终于空闲下来了&#xff0c;带着它来郊区转一圈&#xff0c;顺便交一篇极其不正式的游记吧&#xff0c;写的不好。 本来打算去的远一点&…

Nvidia Jetson/RK3588+AI双目立体相机,适合各种割草机器人、扫地机器人、AGV等应用

双目立体视觉是基于视差原理&#xff0c;依据成像设备从不同位置获取的被测物体的图像&#xff0c;匹配对应点的位置偏移&#xff0c;得到视差数据&#xff0c;进而计算物体的空间三维信息。为您带来高图像质量的双目立体相机&#xff0c;具有高分辨率、低功耗、远距离等优点&a…

一文掌握 Object 类里的所有方法(wait、notify、finalize)

Object 概述 Object 类是 Java 中所有类的父类&#xff0c;这个类中包含了若干方法&#xff0c;这也就意味着所有类都将继承这些方法。因此&#xff0c;掌握这个类的方法是非常必要的&#xff0c;毕竟所有类都能为你提供这些方法。 Object 类位于 java.base 模块下 java.lang…

python系列30:各种爬虫技术总结

1. 使用requests获取网页内容 以巴鲁夫产品为例&#xff0c;可以用get请求获取内容&#xff1a; https://www.balluff.com.cn/zh-cn/products/BES02YF 对应的网页为&#xff1a; 使用简单方法进行解析即可 import requests r BES02YF res requests.get("https://www.…

Apache IoTDB 监控详解 | 分布式系统监控基础

IoTDB 分布式系统监控的基础“须知”&#xff01; 我这个环境的系统性能一直无法提升&#xff0c;能否帮我找到系统的瓶颈在哪里&#xff1f; 系统优化后&#xff0c;虽然写入性能有所提升&#xff0c;但查询延迟却增加了&#xff0c;下一步我该如何排查和优化呢&#xff1f; 请…

办公软件的答案?ONLYOFFICE 桌面应用编辑器会是最好用的 Office 软件?ONLYOFFICE 桌面编辑器使用初体验

文章目录 &#x1f4cb;前言&#x1f3af;什么是 ONLYOFFICE&#x1f3af; 主要功能介绍及 8.1 新功能体验&#x1f3af; 在线体验&#x1f4dd;最后 &#x1f4cb;前言 提到办公软件&#xff0c;大家最常用的可能就是微软的 Microsoft Office 和国产的 WPS Office。这两款软件…

IBCS 虚拟专线用哪些特点!

当今数字化时代&#xff0c;高效、稳定、安全的网络连接对于企业和个人来说至关重要。IBCS 虚拟专线作为一种创新的网络解决方案&#xff0c;凭借其众多显著的优势&#xff0c;正逐渐成为众多用户的首选。 IBCS 虚拟专线最突出的优势之一在于其卓越的网络性能。它通过优化网络路…