简介
Lifecycle是Jetpack中的一个生命周期组件,可用来感知其他组件(如Activity,Fragment)生命周期的变化,从而可以保证我们的一些代码操作控制在合理的生命周期内;
如何使用?
添加以下依赖
implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.6.0")
LifeCycle有两个核心类,一个是LifeCycleOwner
,实现了LifeCycleOwner的类可以作为一个生命周期的被观察者,ComponentActivity(Activity通过继承ComponentActivity实现该接口)和Fragment都实现了该接口,该接口只有一个方法getLifeCycle();另一个LifeCycleObserver,顾名思义这是一个生命周期观察者,实现了这个接口的类就可以感知到Activity的生命周期了。
自定义观察者,这里的DefaultLifecleObserver继承自FullLifecycleObserver,FullLifecycleObserver继承自LifeCycleObserver
class LifeObserver: DefaultLifecycleObserver {
override fun onCreate(owner: LifecycleOwner) {
super.onCreate(owner)
Log.d(TAG, "onCreate")
}
override fun onStart(owner: LifecycleOwner) {
Log.d(TAG, "onStart")
super.onStart(owner)
}
override fun onResume(owner: LifecycleOwner) {
Log.d(TAG, "onResume")
super.onResume(owner)
}
override fun onPause(owner: LifecycleOwner) {
Log.d(TAG, "onPause")
super.onPause(owner)
}
override fun onStop(owner: LifecycleOwner) {
Log.d(TAG, "onStop")
super.onStop(owner)
}
override fun onDestroy(owner: LifecycleOwner) {
Log.d(TAG, "onDestroy")
super.onDestroy(owner)
}
companion object {
private const val TAG = "LifeCycle";
}
}
创建一个AppCompatActivity作为被观察者
class MainActivity : AppCompatActivity() {
//创建一个生命周期观察者
private val lifeObserver by lazy {
LifeObserver()
}
override fun onCreate(savedInstanceState: Bundle?) {
Log.d(TAG, "Activity onCreate")
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
//与观察者绑定
lifecycle.addObserver(lifeObserver)
}
override fun onStart() {
Log.d(TAG, "Activity onStart")
super.onStart()
}
override fun onResume() {
Log.d(TAG, "Activity onResume")
super.onResume()
}
override fun onPause() {
Log.d(TAG, "Activity onPause")
super.onPause()
}
override fun onStop() {
Log.d(TAG, "Activity onStop")
super.onStop()
}
override fun onDestroy() {
Log.d(TAG, "Activity onDestroy")
super.onDestroy()
}
companion object {
private const val TAG = "LifeCycle"
}
}
当启动Activity时,在日志中可以看到,Activity生命周期变化时,在LifeObserver中也成功的感知到了生命周期周期的变化
怎么实现的?
首先来了解几个类:
State:
这是Lifecycle的一个枚举类,里面维护了五个状态DESTORYED
,INITALIZED
,CREATED
,STARTED
,RESUME
在状态分发时用的比较多,和Event配合使用
public enum State {
DESTROYED,
INITIALIZED,
CREATED,
STARTED,
RESUMED;
}
Event:
它也是Lifecycle的一个内部枚举类,对应 Activity 的各个生命周期发生事件
public enum Event {
ON_CREATE,
ON_START,
ON_RESUME,
ON_PAUSE,
ON_STOP,
ON_DESTROY,
ON_ANY;
//在往不可见的方向上,根据state获取生命周期状态,对应下面的状态图,CREATE状态对应Activity下一个生
命周期为onDestroy, STARTED状态对应的下一个生命周期为onStop, RESUMED状态对应的下一个为onPause
@Nullable
public static Event downFrom(@NonNull State state) {
switch (state) {
case CREATED:
return ON_DESTROY;
case STARTED:
return ON_STOP;
case RESUMED:
return ON_PAUSE;
default:
return null;
}
}
//在可见的方向上来看,INITIALIZED状态下一个生命周期为onCreate,CREATE状态的下一个为
onStart,START状态对应的下一个为onResume;
@Nullable
public static Event upFrom(@NonNull State state) {
switch (state) {
case INITIALIZED:
return ON_CREATE;
case CREATED:
return ON_START;
case STARTED:
return ON_RESUME;
default:
return null;
}
}
//根据当前生命周期Event, 获取目标State 这里维护了一个状态机,体现了页面正在可见和正在不可见的两种趋势 如下图
@NonNull
public State getTargetState() {
switch (this) {
case ON_CREATE:
case ON_STOP:
return State.CREATED;
case ON_START:
case ON_PAUSE:
return State.STARTED;
case ON_RESUME:
return State.RESUMED;
case ON_DESTROY:
return State.DESTROYED;
case ON_ANY:
break;
}
throw new IllegalArgumentException(this + " has no target state");
}
}
LifecycleRegistry:
这个类是LifeCycle的实现类,在Activity中获取的lifecycle就是获取的这个类的对象,它里面主要维护了一个mState状态,还有mObserverMap变量,用来存储观察者
private State mState;
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap = new FastSafeIterableMap<>();
private LifecycleRegistry(@NonNull LifecycleOwner provider, boolean enforceMainThread) {
mLifecycleOwner = new WeakReference<>(provider);//持有宿主的弱引用
mState = INITIALIZED;
mEnforceMainThread = enforceMainThread;
}
ObserverWithState:
这个类就是在map中存储的value类型,它是由添加的observer与observer的初始state封装而成
ObserverWithState(LifecycleObserver observer, State initialState) {
mLifecycleObserver = Lifecycling.lifecycleEventObserver(observer);
mState = initialState;
}
static LifecycleEventObserver lifecycleEventObserver(Object object) {
boolean isLifecycleEventObserver = object instanceof LifecycleEventObserver;
//mLifecycleObserver属于FullLifecycleObserver类
boolean isFullLifecycleObserver = object instanceof FullLifecycleObserver;
if (isLifecycleEventObserver && isFullLifecycleObserver) {
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object,
(LifecycleEventObserver) object);
}
if (isFullLifecycleObserver) {
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object, null);
}
....
FullLifecycleObserverAdapter(FullLifecycleObserver fullLifecycleObserver,
LifecycleEventObserver lifecycleEventObserver) {
mFullLifecycleObserver = fullLifecycleObserver;
mLifecycleEventObserver = lifecycleEventObserver;
}
所以最终在mObserverMap中以注册的obsever为key,ObserverWithState为value, 在ObserverWithState中
又把observer以FullLifecycleObserver类型赋值给FullLifecycleObserverAdapter对象的mFullLifecycleObserver,最终把这个FullLifecycleObserverAdapter对象赋值给了ObserverWithState的mLifecycleObserver
了解完上述类之后,我们来看看lifecycle到底是怎么工作的?
查看ComponentActivity的getLifeCycle()
private final LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
...
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
返回的是一个LifeCycleRegistry对象,这个LifeCycleRegistry上面提到过,继承自LifeCycle,在他的构造方法中会将Acitivity的弱引用赋值给mLifecycleOwner,并且初始化当前的状态机mState为INITIALIZED
所以当我们在activity中调用addOnserver()方法时实际调用的是LifeCycleRegistry中的方法,我们来看看addObserver()里面干了什么
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
enforceMainThreadIfNeeded("addObserver");
//mState代表当前宿主的状态,如果当前状态为DESTROYED,则给观察者的状态也赋值为
DESTROYED,后面就不再分发生命周期了,否则观察者的状态都赋值为INITIALIZED,
这样做的原因是,假如在onResume时注册观察者,如果直接赋ONRESUME状态,后面做事件同步时就
丢失了ONCREATE,ONSTART事件
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
//将initialState,和observer封装成ObserverWithState对象,这个对象的结构稍后会讲
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
//observer作为key,刚才封装的对象作为value存储到map中,如果map中已经存在,则返回map中存储的值,否则返回null,这个mObserverMap的key是一个链表的结构,记录了链表的start节点和end节点;它的value是一个双向链表的结构,每个value值记录着它的上一个节点和下一个节点
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
//mLifecycleOwner就是当前宿主的弱引用,若为空,说明该类已经被释放,则直接返回
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
//计算出目标状态,怎么计算后面会说
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
//循环遍历,这个循环主要做的事情就是避免在running(onStart,onResume)状态插入观察者时,使之前的
一些生命周期没有分发给这个oberver
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
//记录插入的状态,这里具体实现是里面有一个mParentStates.add(mState)。 mParentStates是一个ArrayList
,用于存储一些旧的状态,这里mParentStates存储的是INITALIZED
pushParentState(statefulObserver.mState);
//传入的参数是:INITIALIZED,从upFrom中取出的下一次的Event是“ON_CREATE”
final Event event = Event.upFrom(statefulObserver.mState);
if (event == null) {
throw new IllegalStateException("no event up from " + statefulObserver.mState);
}
//走完这代码,statefulObserver.mState就变成了CREATED
statefulObserver.dispatchEvent(lifecycleOwner, event);
//与pushParentState对应,mParentStates.remove;此时mParentStates的size为0
popParentState();
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}
计算目标状态
private State calculateTargetState(LifecycleObserver observer) {
//获取到上一个存储的observer
Entry<LifecycleObserver, ObserverWithState> previous = mObserverMap.ceil(observer);
//拿到上一个存储的observer的状态
State siblingState = previous != null ? previous.getValue().mState : null;
// mParentStates 列表不为空时,将最近添加的 state 值赋给 parentState
//mParentStates有值的情况下代表正在同步状态
State parentState = !mParentStates.isEmpty() ? mParentStates.get(mParentStates.size() - 1)
: null;
//最近添加的state,当前的状态,以及上一个添加的observer的状态取最小值
return min(min(mState, siblingState), parentState);
}
生命周期状态分发
AppcompatActivity.onCreate()
注册了一个空白的Fragment,通过fragment来出发生命周期状态分发
ReportFragment.injectIfNeededIn(this);
public static void injectIfNeededIn(Activity activity) {
...
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
在ReportFragment的生命周期方法中去实现分发以OnStart
为例
@Override
public void onStart() {
super.onStart();
dispatchStart(mProcessListener);
dispatch(Lifecycle.Event.ON_START);
}
在每个生命周期方法中都会调用dispatch方法去分发状态,而在dispatch中又调用了LifecycleRegistry的handleLifecycleEvent
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
enforceMainThreadIfNeeded("handleLifecycleEvent");
//event.getTargetState获取当前的状态,当前Event是onStart,对应的State为STARTED
moveToState(event.getTargetState());
}
private void moveToState(State next) {
if (mState == next) {
return;
}
mState = next;
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
sync();
mHandlingEvent = false;
}
获取到当前的状态之后,通过sync()同步状态
private void sync() {
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
throw new IllegalStateException("LifecycleOwner of this LifecycleRegistry is already"
+ "garbage collected. It is too late to change lifecycle state.");
}
//当map中最早同步的state与最后同步的state一致,并且state为最新的状态时停止同步
while (!isSynced()) {
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
//这里将当前状态和map中存储的状态进行比较,小于0说明流程是向着正在不可见方向发展
比如当前状态是STARTED,上一次状态为RESUME,判断结果小于0,说明正在不可见
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
backwardPass(lifecycleOwner);
}
Map.Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
//大于0说明流程是向着可见方向发展
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass(lifecycleOwner);
}
}
mNewEventOccurred = false;
}
backwardPass()
生命周期状态向着不可见的方向分发,forwardPass
是以可见方向分发
private void backwardPass(LifecycleOwner lifecycleOwner) {
Iterator<Map.Entry<LifecycleObserver, ObserverWithState>> descendingIterator =
mObserverMap.descendingIterator();
while (descendingIterator.hasNext() && !mNewEventOccurred) {
Map.Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
Event event = Event.downFrom(observer.mState); //根据之前的state获取生命周期状态(往不可见的方向)
if (event == null) {
throw new IllegalStateException("no event down from " + observer.mState);
}
pushParentState(event.getTargetState());
observer.dispatchEvent(lifecycleOwner, event); //分发生命周期
popParentState();
}
}
}
对应上图的状态图,在往不可见的方向上,CREATE状态对应Activity下一个生命周期为onDestroy,
STARTED状态对应的下一个生命周期为onStop, RESUMED状态对应的下一个为onPause
public static Event downFrom(@NonNull State state) {
switch (state) {
case CREATED:
return ON_DESTROY;
case STARTED:
return ON_STOP;
case RESUMED:
return ON_PAUSE;
default:
return null;
}
}
再来看看往可见的方向的分发forwardPass
private void forwardPass(LifecycleOwner lifecycleOwner) {
Iterator<Map.Entry<LifecycleObserver, ObserverWithState>> ascendingIterator =
mObserverMap.iteratorWithAdditions();
while (ascendingIterator.hasNext() && !mNewEventOccurred) {
Map.Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
pushParentState(observer.mState);
final Event event = Event.upFrom(observer.mState); //在可见的方向上获取下一个生命周期Event
if (event == null) {
throw new IllegalStateException("no event up from " + observer.mState);
}
observer.dispatchEvent(lifecycleOwner, event); //分发
popParentState();
}
}
}
同样对应状态图,在可见的方向上来看,INITIALIZED状态下一个生命周期为onCreate,CREATE状态的下一个为onStart,START状态对应的下一个为onResume;
public static Event upFrom(@NonNull State state) {
switch (state) {
case INITIALIZED:
return ON_CREATE;
case CREATED:
return ON_START;
case STARTED:
return ON_RESUME;
default:
return null;
}
}
获取到对应的生命周期Event之后就开始分发啦,observer.dispatchEvent(lifecycleOwner, event)
这里的observer是ObserverWithState对象,也就是在addObserver时,将observer与State封装而成的对象,lifecycleOwner参数就是我们的Activity
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = event.getTargetState();
mState = min(mState, newState);
//mLifecycleObserver就是一开始提到的FullLifecycleObserverAdapter对象,它里面有一个mFullLifecycleObserver(也就是我们自己添加的observer)
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
看一下FullLifecycleObserverAdapter的onStateChanged
public void onStateChanged(@NonNull LifecycleOwner source, @NonNull Lifecycle.Event event) {
switch (event) {
case ON_CREATE:
mFullLifecycleObserver.onCreate(source);
break;
case ON_START:
mFullLifecycleObserver.onStart(source);
break;
case ON_RESUME:
mFullLifecycleObserver.onResume(source);
break;
case ON_PAUSE:
mFullLifecycleObserver.onPause(source);
break;
case ON_STOP:
mFullLifecycleObserver.onStop(source);
break;
case ON_DESTROY:
mFullLifecycleObserver.onDestroy(source);
break;
case ON_ANY:
throw new IllegalArgumentException("ON_ANY must not been send by anybody");
}
if (mLifecycleEventObserver != null) {
mLifecycleEventObserver.onStateChanged(source, event);
}
}
mLifecycleObserver的onStateChange就是根据event去调用我们自定义的observer的生命周期方法,至此LifeCycle的整个工作流程也就分析完了
总结
普通组件在使用过程中通常需要依赖于系统组件(Activity/Fragment/LifecycleService)的生命周期,导致系统组件的生命周期回调方法过于臃肿。例如通常在onCreate()中对组件进行初始化,在onPause()中停止组件,在onDestroy()中对组件进行资源回收等。
使用LifeCycle
监听应用组件的生命周期,在应用组件生命周期发生变化时,普通组件也能够及时收到通知,组件便能够在其内部管理自己的生命周期,从而降低模块间的耦合度,并降低内存泄漏发生的可能性。