Python25 Numpy基础

news2025/1/11 18:46:28

图片

1.什么是Numpy

NumPy(Numerical Python 的简称)是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。NumPy 的前身是 Numeric,这是一个由 Jim Hugunin 等人开发的一个用于数值计算的扩展程序库。由于 Numeric 的一些问题,Jim Hugunin 创建了另一个库叫 SciPy,用于弥补 Numeric 的一些不足。之后,NumPy 开发人员将 Numeric 和 SciPy 整合成一个新的库——NumPy,这使得 NumPy 在功能上更加完善。

NumPy 的主要特点包括:

  1. 强大的 N 维数组对象:NumPy 使用一个 n 维数组对象 ndarray,可以方便地存储和操作大型多维数组和矩阵,并提供大量的数学函数库用于数组运算。

  2. 广播功能:广播是 NumPy 对不同形状数组进行数值计算的方式,它对 NumPy 数组的所有运算都适用。

  3. 整合 C/C++/Fortran 代码的能力:NumPy 的大量算法都经过优化,可以直接使用 C、C++ 或 Fortran 编写的代码,这样就可以避免 Python 自带的循环的低效率问题。

  4. 用于线性代数的函数库:NumPy 提供了很多用于线性代数的函数库,如矩阵乘法、矩阵求逆、求解线性方程组等。

  5. 用于统计学的函数库:NumPy 提供了许多用于统计学的函数,如计算均值、中位数、标准差等。

  6. 用于随机数的函数库:NumPy 提供了随机数生成的功能,可以生成符合各种分布的随机数。

  7. 用于快速傅里叶变换的函数库:NumPy 提供了快速傅里叶变换的函数库,用于信号处理和图像处理等领域。

NumPy 在科学计算、数据分析、机器学习等领域有着广泛的应用,是 Python 中最重要的科学计算库之一。

2.Numpy快速入门

NumPy中数组的维称作轴(axis),轴的个数叫做行(rank)。比如:[1, 2, 1],轴的个数为1,行(rank)就是1。

[[ 1., 0., 0.], [ 0., 1., 2.]] 上面这个数组有2行(也就是它是2维的),第一位维度的长度为2(也就是2行),第二维度的长度为3(也就是3列)

NumPy的数组类叫作ndarray,下面是ndarray的几个重要属性:

ndarray.ndim:数组的轴的个数(就是维数)

ndarray.shape:数组的维度(是一个元组)。比如矩阵有n行m列,那么shape为(n,m)

ndarray.size:数组元素的个数。也是shape(n,m)元素的乘积

ndarray.dtype:数组元素类型的描述。例如:numpy.int32, numpy.int16, and numpy.float64 ;

ndarray.itemsize:数组每个元素的字节大小。对于类型为floa64的元素,itemsize为8(=64/8,1byte=8bit)

ndarray.data:数组的缓存数据。通常情况下通过索引获取数据,不必要使用这个属性

以下是numpy的一些常用方法:

import numpy  as np
a=np.arange(15)  # 生成从0开始(包括0),到15(不包括15)的一维整数数组
b=a.reshape(3,5)  # 一维数组重塑为二维数组

print(a)
print(b)
print("b.shape=",b.shape)  # 打印数组的形状
print("b.ndim=",b.ndim)  # 数组的维度数
print("b.dtype.name=",b.dtype.name)  # 数组的数据类型名称
print("b.itemsize=",b.itemsize)  # 数组中每个元素的大小(以字节为单位)
print("b.size=",b.size)  # 数组中的元素总数
print("b.type=",type(b))  # 数组的类型
print(b.dtype)  # NumPy数据类型

# 输出:
'''
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
b.shape= (3, 5)
b.ndim= 2
b.dtype.name= int32
b.itemsize= 4
b.size= 15
b.type= <class 'numpy.ndarray'>
int32
'''

创建数组:

a=np.array([1,2,3])
print(a,a.dtype)  # 打印a的内容和数据类型

b=np.array([1,2,3,4,5.0])
print(b.dtype)  # 由于数组b中包含至少一个浮点数(5.0),所以整个数组的数据类型会被提升为浮点数类型。这通常意味着数组b的数据类型会是float64(在64位系统上)

# 输出:
'''
[1 2 3] int32
float64
'''

创建数组的错误示例:

# 一个常见错误就是:提供给array的参数是多个数字,而不是包含数字的列表
a=np.array(1,2,3,4)  # 错误
a=np.array([1,2,3,4]) # 正确

# 输出报错:
'''
TypeError: array() takes from 1 to 2 positional arguments but 4 were given
'''

创建多维数组:

# 创建多维数组
b=np.array([(1,2,3,5),(4,5,6,7)])
b

# 输出:
'''
array([[1, 2, 3, 5],
       [4, 5, 6, 7]])
'''

创建多维数组并声明数据类型(常见的数据类型有整数、浮点数、复数、布尔型、字符串、时间日期、自定义等):

# 创建数组的时候,可以声明数组的数据类型
c=np.array([[1,2],[3,4]],dtype=complex)  # 复数类型
c

# 输出:
'''
array([[1.+0.j, 2.+0.j],
       [3.+0.j, 4.+0.j]])
'''

numpy 中的 zeros()ones(), 和 empty() 函数:

1.zeros(): 这个函数用于创建元素全为0的数组,可以指定数组的形状和数据类型。例如:

import numpy as np  
a = np.zeros((2, 3))  # 创建一个 2x3 的数组,所有元素都是 0 
a
# 输出:
'''
array([[0., 0., 0.],
       [0., 0., 0.]])
'''

2.ones(): 这个函数用于创建元素全为1的数组,也可以指定数组的形状和数据类型。例如:

b = np.ones((3, 2))  # 创建一个 3x2 的数组,所有元素都是 1  
b
# 输出:
'''
array([[1., 1.],
       [1., 1.],
       [1., 1.]])
'''

3.empty(): 这个函数用于创建一个具有指定形状的新数组,但会分配新的内存空间但不设置数组中的值。因此,数组中的值可能是任意的,通常是未初始化的内存内容。其数据类型默认为 float64,但也可以指定。例如:

c = np.empty((2, 2))  # 创建一个 2x2 的数组,但值可能是任意的  
c
# 输出:
'''
array([[0., 0.],
       [0., 0.]])
'''

empty() 函数返回数组的内容是未初始化的,这意味着它可能包含任何值,取决于分配给该内存空间的先前内容。因此,通常不建议在不需要随机或未定义值的情况下使用 empty()。使用这些函数时,明确数据类型需求,并在需要时通过 dtype 参数来指定它。例如:

d = np.zeros((2, 2), dtype=int)  # 创建一个 2x2 的数组,所有元素都是 0,数据类型为 int  
e = np.ones((3,), dtype=np.complex64)  # 创建一个长度为 3 的一维数组,所有元素都是 1+0j,数据类型为 complex64

创建多维数组并声明数据类型(常见的数据类型有整数、浮点数、复数、布尔型、字符串、时间日期、自定义等):

from numpy import pi
print(np.linspace(0,2,9))  # 0-2中等差的9个数
x=np.linspace(0,2*pi,100)
f=np.sin(x)  # f结果集

# 输出:
'''
[0.   0.25 0.5  0.75 1.   1.25 1.5  1.75 2.  ]
'''

如果数组元素太多,NumPy就会自动跳过中间部分的元素并且只打印边界元素:

print(np.arange(10000))
print(np.arange(10000).reshape(100,100))
# 输出:
'''
[   0    1    2 ... 9997 9998 9999]
[[   0    1    2 ...   97   98   99]
 [ 100  101  102 ...  197  198  199]
 [ 200  201  202 ...  297  298  299]
 ...
 [9700 9701 9702 ... 9797 9798 9799]
 [9800 9801 9802 ... 9897 9898 9899]
 [9900 9901 9902 ... 9997 9998 9999]]

'''

数组的加减乘除等基本运算:

a=np.array([20,30,40,50])
b=np.arange(4)
c=a-b
print(c)  # 减
print(b**2)  # 乘
d=10*np.sin(a)  # 计算sin函数的结果集
print(d)
print(a<35)
b+=a # 加
print(b)

# 输出:
'''
[20 29 38 47]
[0 1 4 9]
[ 9.12945251 -9.88031624  7.4511316  -2.62374854]
[ True  True False False]
[20 31 42 53]

'''

在不同数据类型的数组计算过程中,结果的数据类型自动变为精度更高的数据类型:

a=np.ones(3,dtype=np.int32)
b=np.linspace(0,np.pi,3)
print(b.dtype.name)
c=a+b
print(c,c.dtype.name)
d=np.exp(c*1j)
print(d,d.dtype.name)

# 输出:
'''
float64
[1.         2.57079633 4.14159265] float64
[ 0.54030231+0.84147098j -0.84147098+0.54030231j -0.54030231-0.84147098j] complex128
'''

ndarray这个类有很多对数组的一元操作,比如计算整个数组的所有元素的和:

a=np.random.random((2,3))
print(a)
print(a.sum())  # 所有元素求和
print(a.min())  # 所有元素中的最小值
print(a.max())  # 所有元素中的最大值

# 输出:
'''
[[0.87250384 0.81230807 0.10868113]
 [0.16989921 0.19395409 0.97618396]]
3.13353028992432
0.10868112737793678
0.9761839642308886

'''

也可以按轴进行计算,比如:

b=np.arange(12).reshape(3,4)
print(b)
print(b.sum(axis=1))  # 计算每一行的和
print(b.sum(axis=0))  # 计算每一列的和
print(b.cumsum(axis=1))  # 计算每一行的累积和(对于第一行,0,0+1=1,1+2=3,3+3=6)

# 输出:
'''
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[ 6 22 38]
[12 15 18 21]
[[ 0  1  3  6]
 [ 4  9 15 22]
 [ 8 17 27 38]]

'''

也可以使用一些通用函数进行计算处理:

B=np.arange(3)  # 生成[0,1,2]数组
print(B)
print(np.exp(B))  # 计算e的幂
print(np.sqrt(B))  # 计算每个元素的平方根
C=np.array([2.,-1.,4.])
print(np.add(B,C))

# 输出:
'''
[0 1 2]
[1.         2.71828183 7.3890561 ]
[0.         1.         1.41421356]
[2. 0. 6.]

'''

下面的代码实现一个简单的前馈神经网络(Feedforward Neural Network)的训练过程,该网络包含一个隐藏层。训练是通过迭代优化神经网络的权重和偏置来实现的,具体使用了梯度下降算法(Gradient Descent)结合反向传播(Backpropagation)来更新这些参数:

import numpy as np

# Input array
X=np.array([[1,0,1,0],[1,0,1,1],[0,1,0,1]])

# Output
y=np.array([[1],[1],[0]])

# Sigmoid Function
def sigmoid (x):
    return 1/(1 + np.exp(-x))

# Derivative of Sigmoid Function
def derivatives_sigmoid(x):
    return x * (1 - x)

# Variable initialization
epoch=5000  # Setting training iterations
lr=0.1  # Setting learning rate
inputlayer_neurons = X.shape[1]  # number of features in data set
hiddenlayer_neurons = 3  # number of hidden layers neurons
output_neurons = 1  # number of neurons at output layer

# weight and bias initialization
wh=np.random.uniform(size=(inputlayer_neurons,hiddenlayer_neurons))
bh=np.random.uniform(size=(1,hiddenlayer_neurons))
wout=np.random.uniform(size=(hiddenlayer_neurons,output_neurons))
bout=np.random.uniform(size=(1,output_neurons))

for i in range(epoch):
    # Forward Propogation
    hidden_layer_input1=np.dot(X,wh)
    hidden_layer_input=hidden_layer_input1 + bh
    hiddenlayer_activations = sigmoid(hidden_layer_input)
    output_layer_input1=np.dot(hiddenlayer_activations,wout)
    output_layer_input= output_layer_input1+ bout
    output = sigmoid(output_layer_input)

    # Backpropagation
    E = y-output
    slope_output_layer = derivatives_sigmoid(output)
    slope_hidden_layer = derivatives_sigmoid(hiddenlayer_activations)
    d_output = E * slope_output_layer
    Error_at_hidden_layer = d_output.dot(wout.T)
    d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer
    wout += hiddenlayer_activations.T.dot(d_output) *lr
    bout += np.sum(d_output, axis=0,keepdims=True) *lr
    wh += X.T.dot(d_hiddenlayer) *lr
    bh += np.sum(d_hiddenlayer, axis=0,keepdims=True) *lr
print(output)
print(bh)
print(wh)

# 输出:
'''
[[0.9794804 ]
 [0.96522404]
 [0.04480502]]
[[-0.26860034  0.37221959  0.7842923 ]]
[[ 2.40872021 -0.48817713  0.81159704]
 [-2.09465169  0.99439973  0.72975946]
 [ 2.02487412 -1.07848612  0.40900003]
 [-1.02392791  0.81254532  0.4994015 ]]
'''

索引、切片、递归操作:

a=np.arange(10)**3
print(a)
print(a[2:5])
a[:6:2]=-1000  # 0-6之间的元素,每两个元素,第二个等于-1000
print(a)
print(a[::-1])  # 翻转元素

# 输出:
'''
[  0   1   8  27  64 125 216 343 512 729]
[ 8 27 64]
[-1000     1 -1000    27 -1000   125   216   343   512   729]
[  729   512   343   216   125 -1000    27 -1000     1 -1000]
'''

使用函数创建多维数组:

# 多维数组
def f(x,y):
    return 10*x+y
b=np.fromfunction(f,(5,4),dtype=int)
print(b)
print(b[2,3])
print(b[0:5,1])
print(b[:,1])
print(b[1:3,:])#在第2行和第3行的每一列元素

# 输出:
'''
[[ 0  1  2  3]
 [10 11 12 13]
 [20 21 22 23]
 [30 31 32 33]
 [40 41 42 43]]
23
[ 1 11 21 31 41]
[ 1 11 21 31 41]
[[10 11 12 13]
 [20 21 22 23]]
'''

对数组进行形状操作:

a=np.floor(10*np.random.random((3,4)))  # 向下取整
print(a)
print(a.shape)

# 输出:
'''
[[5. 1. 9. 6.]
 [5. 4. 7. 1.]
 [2. 1. 9. 2.]]
(3, 4)
'''
print(a.ravel()) # 返回一个平铺的数组
print(a.reshape(6,2)) # 重新改变形状

# 输出:
'''
[5. 1. 9. 6. 5. 4. 7. 1. 2. 1. 9. 2.]
[[5. 1.]
 [9. 6.]
 [5. 4.]
 [7. 1.]
 [2. 1.]
 [9. 2.]]
'''
z=np.arange(16).reshape(4,4)
z

# 输出:
'''
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
'''
z.shape

# 输出:
'''
(4, 4)
'''
z.reshape(-1) # 一行

# 输出:
'''
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15])
'''
z.reshape(1,-1) # 一行

# 输出:
'''
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15]])
'''
z.reshape(-1,1) # 一列

# 输出:
'''
array([[ 0],
       [ 1],
       [ 2],
       [ 3],
       [ 4],
       [ 5],
       [ 6],
       [ 7],
       [ 8],
       [ 9],
       [10],
       [11],
       [12],
       [13],
       [14],
       [15]])
'''
z.reshape(2,-1) # 不管有多少列,只要保证为两行

# 输出:
'''
array([[ 0,  1,  2,  3,  4,  5,  6,  7],
       [ 8,  9, 10, 11, 12, 13, 14, 15]])
'''
z.reshape(-1,2) # 不管有多少行,只要保证为2列

# 输出:
'''
array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [ 6,  7],
       [ 8,  9],
       [10, 11],
       [12, 13],
       [14, 15]])
'''

以上内容总结自网络,如有帮助欢迎转发,我们下次再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1873288.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Flexsim物流仿真入门-利用网络节点控制行走路线

在布局优化过程中&#xff0c;往往叉车&#xff0c;操作人员的搬运&#xff0c;是会按照一定的行走路线进行的&#xff0c;这就需要我们进行节点的设计&#xff0c;以此来实现特定路径的行走。 在构建过程中&#xff0c;这里将会以案例的形式进行讲解说明。 1&#xff09;构建…

基于单片机的智能温控风扇设计

摘 要 : 本次设计是基于单片机的智能温控风扇 。 以 STC89C52 单片机为核心 &#xff0c; 可以实现对风扇的有效控制 。 可以根据需要设置不同的温度 &#xff0c;如果温度在设定值最大值和最小值之间时则启动风扇弱风档&#xff0c; 如果温度超过设定的数值时将会变到大风档…

mfc140.dll怎么安装?mfc140.dll丢失安装详细解决方法

当电脑出现找不到mfc140.dll丢失问题&#xff0c;我们需要怎么办&#xff1f;怎么解决mfc140.dll丢失问题&#xff1f;mfc140.dll到底是什么&#xff1f;下面我给大家详细介绍与分析&#xff0c;最重要的是mfc140.dll的解决方法&#xff01; 一、文件丢失原因分析 在分析mfc14…

C++笔记:实现一个字符串类(构造函数、拷贝构造函数、拷贝赋值函数)

实现一个字符串类String&#xff0c;为其提供可接受C风格字符串的构造函数、析构函数、拷贝构造函数和拷贝赋值函数。 声明依赖文件 其中ostream库用于打印标准输入输出&#xff0c;cstring库为C风格的字符串库 #include <iostream> #include <cstring> 声明命…

印度股市连续三天创新高,国际知名评级机构穆迪发出警告

KlipC报道&#xff1a;6月27日&#xff0c;印度股市连续三个交易日创新高&#xff0c;截至当日收盘&#xff0c;印度SENSEX30指数涨0.72%&#xff0c;报79243.18点。印度SENSEX30指数今年以来涨幅接近10%。但国际知名评级机构穆迪发出警告 据悉&#xff0c;到6月25日&#xff…

Unity免费领开发者周6月74个动作捕捉角色运动动画包Omni多方向形状跳跃蹲伏等基础OPSIVE20240628

限时免费领取的角色动画包来啦。在结帐时输入OPSIVE2024优惠券代码即可免费获得。无需购买。 Unity免费领开发者周6月74个动作捕捉角色运动动画包Omni多方向形状跳跃蹲伏等基础OPSIVE202406281136 开发者周促销资源:https://prf.hn/l/w9QJYQ1 优惠券代码:OPSIVE2024 [限时免费…

MIX OTP——监督树和应用

在上一章关于 GenServer 的内容中&#xff0c;我们实现了 KV.Registry 来管理存储容器。在某个时候&#xff0c;我们开始监控存储容器&#xff0c;这样每当 KV.Bucket 崩溃时&#xff0c;我们就能采取行动。虽然变化相对较小&#xff0c;但它提出了一个 Elixir 开发人员经常问的…

Flat Ads:拥抱 CTV,品牌增长新动力

近年来,CTV(联网电视)在数字营销界正迅速崛起,成为最受青睐和增长迅猛的推广形式之一。 随着更多联网设备的普及,越来越多观众正在从传统电视快速转移到流媒体环境,对传统电视广告取而代之的便是 CTV 广告。据 eMarketer 数据显示,未来四年,CTV 市值将从今年的 250 亿美元增长到…

C++-------多态

一.如何实现多态 1.多态的两个条件&#xff1a; (1) 必须通过基类的指针或者引用调用虚函数 (2) 被调用的函数必须是虚函数&#xff0c;且派生类必须对基类的虚函数进行重写&#xff0c;重写必须返回值&#xff0c;函数名&#xff0c;参数类型相同&#xff0c;同时virtual只…

Win10扩充C盘(把其他盘存储空间分给C盘)

C盘虽然没有安装任何软件&#xff0c;但无奈安装某些软件&#xff08;例如VS&#xff0c;QuarC等&#xff09;总会占用C盘容量&#xff0c;且C盘内存很小&#xff08;只有60G左右&#xff09;&#xff0c;看着D盘的三四十空闲内存&#xff0c;决定把D盘内存分给C盘30G&#xff…

uboot中内存DDR测试之mtest使用

相关代码路径: cmd/mem.c配置: make ARCHarm CROSS_COMPILEaarch64-linux-gnu- menuconfigCC cmd/mem.o cmd/mem.c: In function do_mem_mtest: cmd/mem.c:883:10: error: CONFIG_SYS_MEMTEST_START undeclared (first use in this function); did you mean CONFIG_SYS_…

Pbootcms留言“提交成功”的提示语怎么修改

我们在用到pbootcms建站时候&#xff0c;其中有个留言功能&#xff0c;提交成功后会提示&#xff1a;提交成功&#xff08;如下图所示&#xff09;&#xff0c;那么我们要修改这个提示语要怎么操作呢&#xff1f; 如果需要修改的话&#xff0c;直接找到文件/apps/home/control…

一投就中,收稿范围大,1个月内录用,国人发文最多,无风险预警

别人费心费力投个一年都不一定有结果&#xff0c;您直接坐上”直升飞机”&#xff0c;1个月录用。下面老毕分享1本超快录用EI期刊&#xff0c;工程电气方向的学者抓紧投稿。 抢占版面&#xff0c;下方【扫一扫】直接安排&#xff0c;1个月内录用&#x1f308; Journal of Elect…

骗2万人13亿的种菜游戏,幕后老板反手去当了榜一大哥…

这一届人民&#xff0c;可以说&#xff0c;对「种菜」式的田园生活&#xff0c;有一种执念。 或是格子间里日复一日的牢笼生活有些厌倦&#xff0c;也或是过快的城市化进程&#xff0c;让藏在基因里的「田园」属性&#xff0c;还能时不时的觉醒一下…… 除了诗与远方及前些年爆…

Pytest--安装与入门

pytest是一个能够简化成测试系统构建、方便测试规模扩展的框架&#xff0c;它让测试变得更具表现力和可读性–模版代码不再是必需的。只需要几分钟的时间&#xff0c;就可以对你的应用开始一个简单的单元测试或者复杂的功能测试。 1. 安装pytest pip install -U pytest检查版…

PD快充诱骗芯片工作原理,USB-C充电器出不来电压是什么原因?

一般使用Type-C接口的充电器基本上都是采用新的快充协议——PD快充协议&#xff0c;它不同于以前的USB-A的QC协议&#xff0c;这种协议&#xff0c;默认是没有快充电压输出的&#xff0c;VBUS和GND是0V。 所以&#xff0c;我们可以使用电阻的方式&#xff08;电流小&#xff09…

Steam新用户怎么参加夏促 Steam最新注册账号+下载客户端教程

steam夏促来了&#xff0c;这里给新玩家科普一下&#xff0c;steam就是一个游戏平台&#xff0c;里面的海量的各种游戏&#xff0c;而steam经常会有各种打折的活动&#xff0c;夏促就是其中之一&#xff0c;并且是其中规模最大的之一&#xff0c;涵盖游戏数量多&#xff0c;优惠…

【乐吾乐2D可视化组态编辑器】画布

5.1 设置画布属性 默认颜色&#xff1a;预先设置默认颜色&#xff0c;拖拽到画布的节点&#xff08;基础图形、文字、icon&#xff09;自动统一默认颜色。 画笔填充颜色&#xff1a;预先设置画笔填充颜色&#xff0c;拖拽到画布的节点&#xff08;基础图形&#xff09;自动统…

企业应该如果安全上网,软件防查盗版,企业防盗版

随着信息化的发展&#xff0c;企业日常办公越来越依赖互联网。终端以及普通PC终端在访问互联网过程中&#xff0c;会遇到各种各样不容忽视的风险&#xff0c;例如员工主动故意的数据泄漏&#xff0c;后台应用程序偷偷向外部发信息&#xff0c;木马间谍软件的外联&#xff0c;以…

java服务MultipartFile入参测试

项目中经常会涉及到文件的上传下载以及导入相关的功能&#xff0c;今天针对MultipartFile类型文档导入写一下如何测试。 文档导入接口完成&#xff0c;使用postman测试&#xff0c;使用POST方法&#xff0c;进入Body模块&#xff0c;选择form-data选项&#xff0c;key的框体右侧…