【YOLOv5/v7改进系列】引入RT-DETR的RepC3

news2025/1/12 20:55:10
一、导言

RT-DETR(Real-Time Detection Transformer)是一种针对实时目标检测任务的创新方法,它旨在克服YOLO系列和其他基于Transformer的检测器存在的局限性。RT-DETR的主要优点包括:

  1. 无NMS(非极大值抑制)优势:传统的YOLO系列检测器的性能受到NMS过程的负面影响,而RT-DETR利用端到端Transformer架构,消除了对NMS的依赖,从而提高了效率和准确性。

  2. 高效混合编码器:设计了一种高效的混合编码器,通过解耦处理多尺度特征的内部尺度交互和跨尺度融合,大大提升了处理速度。这种方法能够快速高效地处理来自不同尺度的信息,同时保持了准确性。

  3. 不确定性最小化查询选择:提出了一个创新的查询选择机制,旨在提供高质量的初始查询给解码器,从而提升检测的准确性。这个机制通过显式优化不确定性来避免选择具有低定位置信度的特征作为对象查询,减少了检测结果的不确定性。

  4. 灵活的速度调节:RT-DETR支持通过简单调整解码器层数的方式来适应不同场景下的速度需求,无需重新训练模型,为实际应用提供了极大的灵活性。

  5. 卓越的性能:在COCO数据集上,RT-DETR-R50和RT-DETR-R101分别达到了53.1%和54.3%的平均精度(AP),同时在T4 GPU上分别实现了108和74的帧每秒(FPS)。这不仅超越了先前的先进YOLO模型,还在速度和准确性上都优于DINO-R50,且在FPS上快约21倍。

  6. 预训练增强性能:经过Objects365数据集的预训练后,RT-DETR-R50和RT-DETR-R101的性能进一步提升至55.3%和56.2%的AP,显示了巨大的性能提升潜力。

  7. 技术扩展性:RT-DETR及其模型缩放策略拓宽了实时目标检测的技术路径,为多样化实时应用场景提供了超越YOLO的新可能性。

综上,RT-DETR通过其创新的设计,在保证实时性的前提下,实现了速度与准确性的优化,为实时目标检测领域带来了一种新的、性能优越的解决方案。

二、RepC3的特点
RepC3 类

RepC3是基于RepConv构建的一个模块,它是CSP(Cross Stage Partial)结构的一个变体,常用于神经网络的瓶颈层。主要特性包括:

  • 残差连接:类似于ResNet中的残差结构,RepC3通过cv1和cv2路径与中间的多层RepConv模块相加,形成残差连接,有助于梯度传播,加快训练速度,提高模型收敛性。
  • 高效计算:通过多个连续的RepConv模块,以较少的计算资源实现更强的表达能力。每个RepConv模块内部的两个分支在训练时提供多样性,而融合后的结构在推理时保持高效。
  • 通道缩放:引入了膨胀因子e,允许对中间通道数进行动态调整,以平衡模型的深度和宽度,优化模型的计算成本和表示能力。
总结优点
  • 高效推理:通过融合技术和残差结构,RepC3模块在保持高性能的同时,优化了模型的推理速度,特别适合于实时目标检测任务。
  • 灵活性与可扩展性:模块化的设计允许根据需要调整网络的深度和宽度,为不同任务和资源限制提供了高度的定制化能力。
  • 性能与计算效率的平衡:通过精细的结构设计,RepC3能够以较低的计算成本实现较高的检测精度,这对于实时应用至关重要。
三、准备工作

首先在YOLOv5/v7的models文件夹下新建文件repc3.py,导入如下代码

from models.common import *


class RepConv(nn.Module):
    """
    RepConv is a basic rep-style block, including training and deploy status.

    This module is used in RT-DETR.
    Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
    """
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
        """Initializes Light Convolution layer with inputs, outputs & optional activation function."""
        super().__init__()
        assert k == 3 and p == 1
        self.g = g
        self.c1 = c1
        self.c2 = c2
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
        self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
        self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)

    def forward_fuse(self, x):
        """Forward process."""
        return self.act(self.conv(x))

    def forward(self, x):
        """Forward process."""
        id_out = 0 if self.bn is None else self.bn(x)
        return self.act(self.conv1(x) + self.conv2(x) + id_out)

    def get_equivalent_kernel_bias(self):
        """Returns equivalent kernel and bias by adding 3x3 kernel, 1x1 kernel and identity kernel with their biases."""
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
        kernelid, biasid = self._fuse_bn_tensor(self.bn)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        """Pads a 1x1 tensor to a 3x3 tensor."""
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        """Generates appropriate kernels and biases for convolution by fusing branches of the neural network."""
        if branch is None:
            return 0, 0
        if isinstance(branch, Conv):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        elif isinstance(branch, nn.BatchNorm2d):
            if not hasattr(self, 'id_tensor'):
                input_dim = self.c1 // self.g
                kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.c1):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def fuse_convs(self):
        """Combines two convolution layers into a single layer and removes unused attributes from the class."""
        if hasattr(self, 'conv'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
                              out_channels=self.conv1.conv.out_channels,
                              kernel_size=self.conv1.conv.kernel_size,
                              stride=self.conv1.conv.stride,
                              padding=self.conv1.conv.padding,
                              dilation=self.conv1.conv.dilation,
                              groups=self.conv1.conv.groups,
                              bias=True).requires_grad_(False)
        self.conv.weight.data = kernel
        self.conv.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('conv1')
        self.__delattr__('conv2')
        if hasattr(self, 'nm'):
            self.__delattr__('nm')
        if hasattr(self, 'bn'):
            self.__delattr__('bn')
        if hasattr(self, 'id_tensor'):
            self.__delattr__('id_tensor')


class RepC3(nn.Module):
    """Rep C3."""

    def __init__(self, c1, c2, n=3, e=1.0):
        """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
        self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

    def forward(self, x):
        """Forward pass of RT-DETR neck layer."""
        return self.cv3(self.m(self.cv1(x)) + self.cv2(x))

其次在在YOLOv5/v7项目文件下的models/yolo.py中在文件首部添加代码

from models.repc3 import RepC3

并搜索def parse_model(d, ch)

定位到如下行添加以下代码

RepC3, 

四、YOLOv7-tiny改进工作

完成二后,在YOLOv7项目文件下的models文件夹下创建新的文件yolov7-tiny-repc3.yaml,导入如下代码。

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# yolov7-tiny backbone
backbone:
  # [from, number, module, args] c2, k=1, s=1, p=None, g=1, act=True
  [[-1, 1, Conv, [32, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 0-P1/2
  
   [-1, 1, Conv, [64, 3, 2, None, 1, nn.LeakyReLU(0.1)]],  # 1-P2/4
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 7
   
   [-1, 1, MP, []],  # 8-P3/8
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 14
   
   [-1, 1, MP, []],  # 15-P4/16
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 21
   
   [-1, 1, MP, []],  # 22-P5/32
   [-1, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [256, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 28
  ]

# yolov7-tiny head
head:
  [[-1, 1, v7tiny_SPP, [256]], # 29
  
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [21, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 39
  
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [14, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],
   
   [-1, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [32, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [32, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 49
   
   [-1, 1, Conv, [128, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 39], 1, Concat, [1]],
   
   [-1, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [64, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [64, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],  # 57
   
   [-1, 1, Conv, [256, 3, 2, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, 29], 1, Concat, [1]],
   
   [-1, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-2, 1, Conv, [128, 1, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [-1, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [[-1, -2, -3, -4], 1, Concat, [1]],
   [-1, 3, RepC3, [256, 0.5]], # 65
      
   [49, 1, Conv, [128, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [57, 1, Conv, [256, 3, 1, None, 1, nn.LeakyReLU(0.1)]],
   [65, 1, Conv, [512, 3, 1, None, 1, nn.LeakyReLU(0.1)]],

   [[66, 67, 68], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

                 from  n    params  module                                  arguments                     
  0                -1  1       928  models.common.Conv                      [3, 32, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]
  2                -1  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  3                -2  1      2112  models.common.Conv                      [64, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  4                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  5                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  6  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
  7                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
  8                -1  1         0  models.common.MP                        []                            
  9                -1  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 10                -2  1      4224  models.common.Conv                      [64, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 11                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 12                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 13  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 15                -1  1         0  models.common.MP                        []                            
 16                -1  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 17                -2  1     16640  models.common.Conv                      [128, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 20  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 21                -1  1    131584  models.common.Conv                      [512, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 22                -1  1         0  models.common.MP                        []                            
 23                -1  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 24                -2  1     66048  models.common.Conv                      [256, 256, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 25                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 26                -1  1    590336  models.common.Conv                      [256, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 27  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 28                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 29                -1  1    657408  models.common.v7tiny_SPP                [512, 256]                    
 30                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 31                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 32                21  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 33          [-1, -2]  1         0  models.common.Concat                    [1]                           
 34                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 35                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 36                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 37                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 38  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 39                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 40                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 41                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 42                14  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 43          [-1, -2]  1         0  models.common.Concat                    [1]                           
 44                -1  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 45                -2  1      4160  models.common.Conv                      [128, 32, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 46                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 47                -1  1      9280  models.common.Conv                      [32, 32, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 48  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 49                -1  1      8320  models.common.Conv                      [128, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 50                -1  1     73984  models.common.Conv                      [64, 128, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]
 51          [-1, 39]  1         0  models.common.Concat                    [1]                           
 52                -1  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 53                -2  1     16512  models.common.Conv                      [256, 64, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 54                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 55                -1  1     36992  models.common.Conv                      [64, 64, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 56  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 57                -1  1     33024  models.common.Conv                      [256, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 58                -1  1    295424  models.common.Conv                      [128, 256, 3, 2, None, 1, LeakyReLU(negative_slope=0.1)]
 59          [-1, 29]  1         0  models.common.Concat                    [1]                           
 60                -1  1     65792  models.common.Conv                      [512, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 61                -2  1     65792  models.common.Conv                      [512, 128, 1, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 62                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 63                -1  1    147712  models.common.Conv                      [128, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 64  [-1, -2, -3, -4]  1         0  models.common.Concat                    [1]                           
 65                -1  1    657920  models.repc3.RepC3                      [512, 256, 3, 0.5]            
 66                49  1     73984  models.common.Conv                      [64, 128, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 67                57  1    295424  models.common.Conv                      [128, 256, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 68                65  1   1180672  models.common.Conv                      [256, 512, 3, 1, None, 1, LeakyReLU(negative_slope=0.1)]
 69      [66, 67, 68]  1     17132  models.yolo.IDetect                     [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]

Model Summary: 298 layers, 6541324 parameters, 6541324 gradients, 13.6 GFLOPS

运行后若打印出如上文本代表改进成功。

五、YOLOv5s改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5s-repc3.yaml,导入如下代码。

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, RepC3, [256, 0.5]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

                 from  n    params  module                                  arguments                     
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     82688  models.repc3.RepC3                      [256, 128, 1, 0.5]            
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          
 24      [17, 20, 23]  1     16182  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]

Model Summary: 271 layers, 7014134 parameters, 7014134 gradients, 15.8 GFLOPs

运行后若打印出如上文本代表改进成功。

六、YOLOv5n改进工作

完成二后,在YOLOv5项目文件下的models文件夹下创建新的文件yolov5n-repc3.yaml,导入如下代码。

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, RepC3, [256, 0.5]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

                 from  n    params  module                                  arguments                     
  0                -1  1      1760  models.common.Conv                      [3, 16, 6, 2, 2]              
  1                -1  1      4672  models.common.Conv                      [16, 32, 3, 2]                
  2                -1  1      4800  models.common.C3                        [32, 32, 1]                   
  3                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                
  4                -1  2     29184  models.common.C3                        [64, 64, 2]                   
  5                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
  6                -1  3    156928  models.common.C3                        [128, 128, 3]                 
  7                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              
  8                -1  1    296448  models.common.C3                        [256, 256, 1]                 
  9                -1  1    164608  models.common.SPPF                      [256, 256, 5]                 
 10                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 12           [-1, 6]  1         0  models.common.Concat                    [1]                           
 13                -1  1     90880  models.common.C3                        [256, 128, 1, False]          
 14                -1  1      8320  models.common.Conv                      [128, 64, 1, 1]               
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 16           [-1, 4]  1         0  models.common.Concat                    [1]                           
 17                -1  1     20864  models.repc3.RepC3                      [128, 64, 1, 0.5]             
 18                -1  1     36992  models.common.Conv                      [64, 64, 3, 2]                
 19          [-1, 14]  1         0  models.common.Concat                    [1]                           
 20                -1  1     74496  models.common.C3                        [128, 128, 1, False]          
 21                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              
 22          [-1, 10]  1         0  models.common.Concat                    [1]                           
 23                -1  1    296448  models.common.C3                        [256, 256, 1, False]          
 24      [17, 20, 23]  1      8118  models.yolo.Detect                      [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [64, 128, 256]]

Model Summary: 271 layers, 1763222 parameters, 1763222 gradients, 4.2 GFLOPs

运行后打印如上代码说明改进成功。

更多文章产出中,主打简洁和准确,欢迎关注我,共同探讨!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1871683.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于LMS自适应滤波的窄带信号宽带噪声去除(MATLAB R2021B)

数十年的研究极大的发展了自适应滤波理论,自适应滤波理论已经成为信号处理领域研究的热点之一。从理论上讲,自适应滤波问题没有唯一解。为了得到自适应滤波器及其应用系统,可以根据不同的优化准则推导出许多不同的自适应理论。目前该理论主要…

youlai-boot项目的学习(4) 前后端本地部署

环境 1、macOS, brew, IntelliJ IDEA, WebStrom 2、后端:https://gitee.com/youlaiorg/youlai-boot.git , master, 9a753a2e94985ed4cbbf214156ca035082e02723 3、前端:https://gitee.com/youlaiorg/vue3-element-admin.git, master, 66b913ef01dc880ad…

嵌入式Linux系统编程 — 4.1 字符串输入输出

目录 1 字符串输出 1.1 字符串输出函数简介 1.2 示例程序 2 字符串输入 2.1 字符串输入简介 2.2 示例程序 程序运行时,需打印信息至标准输出 stdout 设备 或标准错误 stderr设备(譬如屏幕),如调试信息、报错信息、中间产生的…

hnust 1817 算法10-10,10-11:堆排序

hnust 1817 算法10-10,10-11:堆排序 题目描述 堆排序是一种利用堆结构进行排序的方法,它只需要一个记录大小的辅助空间,每个待排序的记录仅需要占用一个存储空间。 首先建立小根堆或大根堆,然后通过利用堆的性质即堆顶的元素是最…

NDT(基于正态分布变换的配准算法)

NDT是将单个扫描的离散点集转换为空间上定义的分段连续可微概率密度,该概率密度由一组易于计算的正态分布组成的算法。采用NDT连续化后,传统硬离散优化问题能够潜在地转化为更易于处理的连续优化问题。 NDT原理 NDT将根据点云中点所处的位置&#xff0…

一款开源、免费、现代化风格的WPF UI控件库

前言 今天大姚给大家分享一款开源(MIT License)、免费、现代化风格的WPF UI控件库:ModernWpf。 项目介绍 ModernWpf是一个开源项目,它为 WPF 提供了一组现代化的控件和主题,使开发人员能够创建具有现代外观的桌面应…

Linux的fread函数

fread函数 从文件中读入数据到指定的地址中 函数原型 : size_t fread(void*buff , size_t size, size_t count , FILE* stream) /* * description : 对已打开的流进行数据读取 * param ‐ ptr :指向 数据块的指针 * param ‐ size :指定读取的每…

GuLi商城-商品服务-API-三级分类-删除-页面效果

一步步学习Vue太慢了,准备跳过前端的学习,直接使用前端完整的项目 下载依赖npm install,会报错,排查了好久 我安装的是Node14,所以必须要安装4.14 Vscode终端输入:npm install node-sass4.14 输入&#x…

snat、dnat和firewalld

snat :源地址转换 内网——外网 内网ip转换成可以访问外网的ip 也就是内网的多个主机可以只有一个有效的公网ip地址访问外部网络 DNAT:目的地址转发 外部用户,可以通过一个公网地址访问服务内部的私网服务 也就是私网的IP和公网IP做一个…

Golang | Leetcode Golang题解之第202题快乐数

题目: 题解: func isHappy(n int) bool {cycle : map[int]bool{4: true, 6: true, 37: true, 58: true, 89: true, 145: true, 42: true, 20: true}for n ! 1 && !cycle[n] {n step(n)}return n 1 }func step(n int) int {sum : 0for n > …

亚马逊AI技术风波:人工智能“洗白”现象引发质疑

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

基于RabbitMQ的异步消息传递:发送与消费

引言 RabbitMQ是一个流行的开源消息代理,用于在分布式系统中实现异步消息传递。它基于Erlang语言编写,具有高可用性和可伸缩性。在本文中,我们将探讨如何在Python中使用RabbitMQ进行消息发送和消费。 安装RabbitMQ 在 Ubuntu 上安装 Rabbi…

stm32中IIC通讯协议

参考资料:大部分均引用b站江协科技课程、GPT及网络资料 什么是IIC(i2C)通讯协议? 关键字:SCL、SDA、半双工、同步、串行。 IIC(Inter-Integrated Circuit),也称为I2C(In…

vue2 element ui 表单 动态增加表单项 表单项值不可重复 select多选

案例 <template><el-form :model"form" ref"form" label-width"70px"><el-form-item><el-button icon"el-icon-plus" type"primary" plain click"add">新增</el-button><el-b…

22 Shell编程之免交互

目录 22.1 Here Document免交互 22.1.1 Here Document概述 22.1.2 Here Document免交互 22.1.3 Here Document变量设定 22.1.4 Here Document格式控制 22.1.5 Here Document多行注释 22.2 expect免交互 22.2.1 expect概述 22.2.2 expect安装 22.2.3 基本命令介绍 22.2.4expec…

期末测试一

字符数组的排序注意的问题 &#xff1a; 1.对于输入字符的时候 如果给出了要输入几个字符 n >>>>> for ( i 0 ; i < n ;i ) { scanf("%c",&ch); } 如果说直到输入到换行符结束 >>>>>>while ( ch! \ n ) 这个需要额…

C#——命名空间详情

命名空间 在 C# 中&#xff0c;可以将命名空间看作是一个范围&#xff0c;用来标注命名空间中成员的归属&#xff0c;一个命名空间中类与另一个命名空间中同名的类互不冲突&#xff0c;但在同一个命名空间中类的名称必须是唯一的。 定义命名空间 定义命名空间需要使用 namesp…

应用防火墙WAF

Web应用防火墙&#xff08;WAF&#xff09;是一种网络安全技术&#xff0c;旨在保护网站和网络应用程序免受各种网络攻击。它位于应用程序和用户之间&#xff0c;监控和过滤通过网络流量&#xff0c;以阻止恶意流量进入系统。WAF可识别并防止常见的网络攻击&#xff0c;如SQL注…

ViewController 的常用跳转及返回方法

ViewController 的常用跳转及返回方法 ViewController 的常用跳转及返回方法模态跳转导航控制器选项卡控制器Storyboard 的 segues 方式跳转 ViewController 的常用跳转及返回方法 模态跳转 一个普通的视图控制器一般只有模态跳转的功能&#xff0c;这个方法是所有视图控制器…

MySQL高级-索引-使用规则-SQL提示(use、ignore、force)

文章目录 1、查看表 tb_user2、展示索引3、为profession、age、status创建 联合索引4、查询 profession软件工程5、执行计划 profession软件工程6、创建profession单列索引7、再次执行计划 profession软件工程8、SQL提示8.1、use index(idx_user_pro)8.2、ignore index(idx_use…