基于昇腾AI | Yolov7模型迁移到昇腾平台EA500I边缘计算盒子的实操指南

news2024/11/19 10:57:44

近年来,国产化替代的进程正在加快。在众多国产平台中,昇腾平台具有高性能、低功耗、易扩展、软件栈全面成熟等优势,其产品和技术在国内众多领域实现了广泛应用;作为昇腾的APN伙伴和IHV合作伙伴,英码科技携手昇腾推出了一系列边缘计算产品,具备性能强劲、更宽工温、外设接口丰富、利旧性强等特点,同时,得益于昇腾AI软件栈的全面支持,这些产品为各行业AI应用高效、低成本落地提供了强有力的支撑。

YOLOv7是目前YOLO系列目标检测算法的最新版本,能够快速检测多种尺度和多标签的对象,同时具有高精度、低时延等特点,是目标较为主流的目标检测算法,在安防监控、自动驾驶、医疗影像分析等领域发挥着重要的作用。

图片

今天来介绍【基于昇腾AI】技术干货系列的另一个主题:如何将Yolov7模型迁移到昇腾平台?下面以英码科技基于昇腾平台开发的EA500I边缘计算盒子为硬件载体,详细讲解Yolov7模型迁移的流程,以及实际应用的演示。

Yolov7模型迁移到昇腾平台&案例演示

前置条件

图片

开发环境部署说明

基于昇腾平台的全系边缘计算盒子已完成环境部署工作,客户无需重新部署。

Yolov7源码下载

git clone https://github.com/WongKinYiu/yolov7.git

预训练模型的下载

cd yolov7
wget   --no-check-certificate https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt

*温馨提示:如果下载速度慢可到官网下载

图片

验证模型是否可以正常识别图片

python3 detect.py --weight yolov7.pt

训练模型转ONNX模型

由于 Ascend 推理工具还未支持Pytorch的pt,pth模型,需要转换成ONNX才能使用yolov7有两种训练配置文件分别为deploy和traing,Detect层不一样导致转onnx上有略微区别,本次测试的为deploy

python3 export.py --weights yolov7.pt --grid --simplify --img-size 640 640

--weights:指定预训练模型yolov7.pt

--grid: 保留 Detect层

--simplify :简化onnx模型结构

Yolov7模型推理(EA500I)

1 环境声明

 export DDK_PATH=$HOME/Ascend/ascend-toolkit/latest
 export NPU_HOST_LIB=$DDK_PATH/runtime/lib64/stub
 export THIRDPART_PATH=${DDK_PATH}/thirdpart
 export LD_LIBRARY_PATH=${THIRDPART_PATH}/lib:$LD_LIBRARY_PATH

创建THIRDPART_PATH路径

mkdir -p ${THIRDPART_PATH}

acllite

注:源码安装ffmpeg主要是为了acllite库的安装 执行以下命令安装x264

# 下载x264
cd ${HOME}
git clone https://code.videolan.org/videolan/x264.git
cd x264
# 安装x264
./configure --enable-shared --disable-asm
make
sudo make install
sudo cp /usr/local/lib/libx264.so.164 /lib

执行以下命令安装ffmpeg

# 下载ffmpeg
cd ${HOME}
wget http://www.ffmpeg.org/releases/ffmpeg-4.1.3.tar.gz --no-check-certificate
tar -zxvf ffmpeg-4.1.3.tar.gz
cd ffmpeg-4.1.3
# 安装ffmpeg
./configure --enable-shared --enable-pic --enable-static --disable-x86asm --enable-libx264 --enable-gpl --prefix=${THIRDPART_PATH}
make -j8
make install

执行以下命令安装acllite

cd ${HOME}/samples/inference/acllite/cplusplus
make
make install

​​​​​​​opencv

执行以下命令安装opencv(注:确保是3.x版本)

sudo apt-get install libopencv-dev

2、样例运行

①数据准备

请从以下链接获取该样例的输入图片,放在data目录下。

cd $HOME/samples/inference/modelInference/sampleYOLOV7/data
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/models/aclsample/dog1_1024_683.jpg

​​​​​​​​​​​​​​

②ATC模型转换

前面(5)的yolov7.onnx模型转换为适配昇腾310处理器的离线模型(*.om文件),放在model路径下。

# 为了方便下载,在这里直接给出原始模型下载及模型转换命令,可以直接拷贝执行。​​​​​​​

cd $HOME/samples/inference/modelInference/sampleYOLOV7/model
wget --no-check-certificate https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/yolov7/yolov7x.onnx
wget --no-check-certificate https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/003_Atc_Models/yolov7/aipp.cfg
atc --model=yolov7x.onnx --framework=5 --output=yolov7x --input_shape="images:1,3,640,640"  --soc_version=Ascend310B1  --insert_op_conf=aipp.cfg

③样例编译

执行以下命令,执行编译脚本,开始样例编译。

cd $HOME/samples/inference/modelInference/sampleYOLOV7/scripts
bash sample_build.sh

​​​​​​​​​​​​​​

④样例运行

执行运行脚本,开始样例运行。

bash sample_run.sh

⑤样例结果展示

运行完成后,会在样例工程的out目录下生成推理后的图片,显示对比结果如下所示

图片

结语

以上详细介绍了如何将Yolov7模型迁移到昇腾平台EA500I边缘计算盒子,希望能够帮助提升研发效率、缩短项目落地时间,如需更多技术和产品支持,欢迎留言!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1863593.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据安全如何防护?迅软加密软件保护企业数据资产

前言:加密软件是一种重要的工具,可以帮助企业保护其数据资产的安全。通过使用加密算法,加密软件可以将敏感数据转化为无法理解的密文,只有授权的用户才能解密并访问这些数据。 一、迅软加密软件保护企业数据资产的关键方面 1、数…

小迪安全v2023笔记 1-18

小迪安全v2023笔记 1-18 棱角社区 文章目录 1. 基础入门1. 正向shell与反向shell2. web应用3. 抓包,封包,协议,app,小程序,pc应用,web应用 2. 信息打点1. 常见信息获取2. 文件泄露3. 常见阻碍4. CDN绕过&a…

硕思LOGO设计师软件下载附加详细安装教程

​根据行业数据显示硕思logo设计者中有图片渐变、文本效果、阴影、发光、斜角、倒影等多种多样的logo图形样子和款式,能够导出或打印logo来满足不同的使用要求,所见即所得的软件界面,在预览窗口中实时查看logo图形,对于设计和制作…

深度测试中的隐藏面消除技术

by STANCH 标签:#计算机图形学 #深度测试 #深度测试 #隐藏面消除 1.概述 根据我们的日常经验,近处的物体会挡住后面的物体,在三维场景中通常通过深度缓冲来实现这样的效果。深度缓冲记录着屏幕对应的每个像素的深度值。模型一开始所在的局部…

Linux的shell语法

Linux的shell脚本 1.概述 shell解释器,介于操作系统内核与用户之间,充当了一个“命令解释器”的角色,负责接收用户输入的操作指令(命令)并进行解释,将需要执行的操作传递给内核执行,并输出执行…

从零开始做题:老照片中的密码

老照片中的密码 1.题目 1.1 给出图片如下 1.2 给出如下提示 这张老照片中的人使用的是莫尔斯电报机,莫尔斯电报机分为莫尔斯人工电报机和莫尔斯自动电报机(简称莫尔斯快机)。莫尔斯人工电报机是一种最简单的电报机,由三个部分组…

计算机毕业设计Thinkphp/Laravel学生考勤管理系统zyoqy

管理员登录学生考勤管理系统后,可以对首页、个人中心、公告信息管理、年级管理、专业管理、班级管理、学生管理、教师管理、课程信息管理、学生选课管理、课程签到管理、请假申请管理、销假申请管理等功能进行相应操作,如图5-2所示。学生登录进入学生考勤…

玄子Share-本地部署 AI 大模型与构建知识库

玄子Share-本地部署 AI 大模型与构建知识库 部署环境概述 警告!OpenAI 宣布全面封锁中国 API 接入 昨天,许多开发者从 OpenAI 那收到了一份警告信 您好, 据我们的数据监测,贵组织正从 OpenAl 当前未支持的区域产生 API 访问流量…

python基础篇(6):global关键字

使用 global关键字 可以在函数内部声明变量为全局变量 未使用global关键字的代码: # global关键字,在函数内声明变量为全局变量 num 200def test_a():print(f"test_a: {num}")def test_b():num 500print(f"test_b: {num}")test_…

护眼大路灯十大品牌有必要买很贵的吗?护眼落地灯十大品牌分享

护眼大路灯十大品牌有必要买很贵的吗?由于学习需要,很多小孩回家以后都会挑灯夜读,而夜间读写时的普通照明灯不够亮看书写字有阴影,再加上蓝光频闪严重,长期处于这种低质照明环境会加剧孩子用眼疲劳,睫状肌…

ChatGPT 论文助手:如何用 AI 技术加速学术写作过程

ChatGPT在论文写作中的应用 ChatGPT作为一个先进的语言模型,在学术论文创作领域提供显著帮助。它不仅提升学生与研究者的写作效率,还优化论文质量并引入创新观点。以下是ChatGPT在论文写作中的几种具体应用: 提升写作效率 生成写作构思&…

基于Flask开发的前后端交互项目(可用于期末大作业) MySQL数据库 文件上传 Spider爬虫 Echarts可视化展示 JS动态

项目描述: 开发一个基于Flask框架开发的前后端交互项目,项目内容为 东京奥运会 。对各个需要填写的字段做了数据验证,非法信息会被JS拦截提醒不合法;还对未登录就访问做了拦截,阻止未登录就访问。 前端:HT…

web前端大作业--美团外卖1

文章目录 概述代码截图代码链接 概述 web美团 登录和注册功能、页面展示。 代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><link rel"stylesheet" href&quo…

低成本的PS5存储扩容方案,铠侠SD10 PCle4.0固态硬盘扩容报告

低成本的PS5存储扩容方案&#xff0c;铠侠SD10 PCle4.0固态硬盘扩容报告 哈喽小伙伴们好&#xff0c;我是Stark-C~ 对于入手PS5的游戏玩家来说&#xff0c;机器到手第一步&#xff0c;那就是订阅索尼PlayStation Plus会员&#xff0c;可以尽情的玩耍上百款游戏3A大作&#xf…

电脑屏幕花屏怎么办?5个方法解决问题!

“我刚刚打开电脑就发现我的电脑屏幕出现了花屏的情况。这让我很困惑&#xff0c;我应该怎么解决这个问题呢&#xff1f;求帮助。” 在这个数字时代的浪潮中&#xff0c;电脑早已成为我们生活中不可或缺的一部分。然而&#xff0c;当你正沉浸在紧张的游戏对战中&#xff0c;或是…

ROS2从入门到精通2-2:详解机器人3D可视化工具Rviz2与案例分析

目录 0 专栏介绍1 什么是Rviz2&#xff1f;2 Rviz2基本界面3 Rviz2基本数据类型4 数据可视化案例4.1 实例1&#xff1a;显示USB摄像头数据4.2 实例2&#xff1a;显示球体 0 专栏介绍 本专栏旨在通过对ROS2的系统学习&#xff0c;掌握ROS2底层基本分布式原理&#xff0c;并具有…

基于FreeRTOS+STM32CubeMX+LCD1602+MCP4141(SPI接口)的数字电位器Proteus仿真

一、仿真原理图: 二、运行效果: 三、软件部分: 1)、SPI读写: 2)、初始化部分: void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the CPU, AHB and APB busses clocks …

npm攻略:从新手到专家的必经之路(通俗易懂通俗易懂)

npm是Node.js的包管理工具&#xff0c;它使得安装、管理和发布JavaScript模块变得简单。本文将详细介绍npm的基本概念、使用方法、主要作用以及注意事项。 一、npm简介 1. npm的起源 npm由Isaac Z. Schlueter于2010年创建&#xff0c;旨在简化JavaScript模块的安装和管理。 …

CompletableFuture使用(全网最详细!!!)

一、runAsync 1、runAsync&#xff08;Runnable&#xff09; 2、runAsync(Runnable, Executor) 二、supplyAsync 1、supplyAsync(Supplier) 2、supplyAsync(Supplier , Executor) 三、CompletableFuture中 get 与 join的区别 四、thenApply方法 1、thenApply(Function)…

运行ChatGLM大模型时,遇到的各种报错信息及解决方法

①IMPORTANT: You are using gradio version 3.49.0, however version 4.29.0 is available, please upgrade 原因分析&#xff1a; 因为使用的gradio版本过高&#xff0c;使用较低版本。 pip install gradio3.49.0 会有提示IMPORTANT: You are using gradio version 3.49.…