循环神经网络——RNN

news2025/1/10 17:49:53

循环神经网络

在之前NLP基础章节-语言模型中我们介绍了 n n n 元语法,其中单词 x t x_t xt 在时间步 t t t 的条件概率仅取决于前面 n n n 个单词,若是想要将之前单词的影响也加入那么模型参数数量会指数级增长。但是可能之前的单词存在重要的信息是无法舍弃的,于是我们可以参考NLP基础-序列模型中提到隐变量模型。 h t = f ( x 1 , ⋯   , x t − 1 ) . h_t = f(x_1,\cdots,x_{t-1}). ht=f(x1,,xt1).
这样模型需要同时预测 x t x_t xt 和更新 h t h_t ht,于是模型形式上就变成: h t = g ( h t − 1 , x t − 1 ) . h_t=g(h_{t-1},x_{t-1}). ht=g(ht1,xt1). x t = P ( x t ∣ h t ) . x_t=P(x_t|h_t). xt=P(xtht).

无隐状态的神经网络

无隐状态的神经网络其实可以看做多层感知机(MLP),回顾一下MLP的模型,设隐藏层的激活函数为 ϕ \phi ϕ,小批量样本为 X X X,隐藏层的输出 H H H 计算如下:(隐藏层并不等于隐变量) H = ϕ ( X W x h + b h ) . H = \phi(XW_{xh}+b_h). H=ϕ(XWxh+bh). 接下来将隐藏层的输出 H H H 作为输出层的输入: O = ϕ ( H W h q + b q ) . O=\phi(HW_{hq}+b_{q}). O=ϕ(HWhq+bq).
这样的模型我们已经很熟悉了。接下来看隐状态的神经网络。

有隐状态的神经网络

与多层感知机不同的是,我们需要保存前一个时间步的隐藏变量 H t − 1 H_{t-1} Ht1,并使用 W h h W_{hh} Whh 作为该隐变量的权重 H t = ϕ ( X t W x h + H t − 1 W h h + b h ) . H_t=\phi(X_tW_{xh}+H_{t-1}W_{hh}+b_h). Ht=ϕ(XtWxh+Ht1Whh+bh). O t = H t W h q + b q . O_t=H_tW_{hq}+b_q. Ot=HtWhq+bq.
在这里插入图片描述

困惑度(Perplexity)

这里的困惑度是针对语言模型的质量的一个评分标准。一个好的语言模型能够用高度准确的词元来预测我们接下来会看到什么。 考虑一下由不同的语言模型给出的对“It is raining …”(“…下雨了”)的续写:

  1. “It is raining outside”(外面下雨了);
  2. “It is raining banana tree”(香蕉树下雨了);
  3. “It is raining piouw;kcj pwepoiut”(piouw;kcj pwepoiut下雨了)。
    例1无疑是正确的,逻辑连贯符合情理的。而例2虽然正确拼写但句子没有逻辑没有意义。例3则根本没有正确的拼写。
    根据信息论知识,如果想要压缩文本,我们可以根据当前词元集预测的下一个词元。 一个更好的语言模型应该能让我们更准确地预测下一个词元。 因此,它应该允许我们在压缩序列时花费更少的比特。 所以我们可以通过一个序列中所有的 n n n 个词元的交叉熵损失的平均值来衡量:
    1 n ∑ t = 1 n − log ⁡ P ( x t ∣ x t − 1 , ⋯   , x 1 ) \frac 1n\sum_{t=1}^{n}-\log P(x_t|x_{t-1},\cdots,x_1) n1t=1nlogP(xtxt1,,x1)
    其中 P ( ) P() P() 由语言模型给出,而困惑度则是上式的指数:
    exp ⁡ ( − 1 n ∑ t = 1 n log ⁡ P ( x t ∣ x t − 1 , ⋯   , x 1 ) ) \exp(-\frac 1n\sum_{t=1}^{n}\log P(x_t|x_{t-1},\cdots,x_1)) exp(n1t=1nlogP(xtxt1,,x1))
    困惑度的最好的理解是“下一个词元的实际选择数的调和平均数”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1863221.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux-笔记 高级I/O操作

前言 I/O(Input/Output,输入/输出)是计算机系统中的一个重要组成部分,它是指计算机与 外部世界之间的信息交流过程。I/O 操作是计算机系统中的一种基本操作,用于向外部设备(如 硬盘、键盘、鼠标、网络等&am…

服务器数据恢复—异常断电导致RAID6阵列中磁盘出现坏扇区的数据恢复案例

服务器存储数据恢复环境: 一台存储中有一组由12块SAS硬盘组建的RAID6磁盘阵列,划分为一个卷,分配给几台Vmware ESXI主机做共享存储。该卷中存放了大量Windows虚拟机,这些虚拟机系统盘是统一大小,数据盘大小不确定&…

服务器硬件及RAID配置

目录 一、RAID磁盘阵列 1.概念 2.RAID 0 3.RAID 1 4.RAID 5 5.RAID 6 6.RAID 10 二、阵列卡 1.简介 2.缓存 三、创建 1.创建RAID 0 2.创建RAID 1 3.创建RAID 5 4.创建RAID 10 四、模拟故障 一、RAID磁盘阵列 1.概念 (1)是Redundant Array …

求任意方阵每行,每列,两对角线上元素之和

注:其中对角线,我们可以分为正副两个,正:左上角指向右下角,副:右上角指向左下角 //这里我们以阶层为5为例子进行代码的实现 #define N 5 void arr_diagonal(int arr[N][N]) {int sum1 0, sum2 0, sum 0…

Js逆向爬虫基础篇

这里写自定义目录标题 逆向技巧断点一 、请求入口定位1. 关键字搜索2. 请求堆栈3. hook4. JSON.stringify 二、响应入口定位:1. 关键字搜索2. hook3. JSON.parse 逆向技巧 断点 普通断点 条件断点 日志断点 XHR断点 一 、请求入口定位 1. 关键字搜索 key关…

C++ | Leetcode C++题解之第198题打家劫舍

题目&#xff1a; 题解&#xff1a; class Solution { public:int rob(vector<int>& nums) {if (nums.empty()) {return 0;}int size nums.size();if (size 1) {return nums[0];}int first nums[0], second max(nums[0], nums[1]);for (int i 2; i < size; …

10.XSS绕过之htmlspecialchars()函数

XSS绕过之htmlspecialchars()函数 首先可以测试一下是否将字符被转移成html实体&#xff0c;输入字符测试 1111"<>$点击提交 查看页面元素代码&#xff0c;发现单引号不变&#xff0c;可以利用 重新输入攻击代码&#xff0c;用单引号闭合前面的&#xff0c;进…

深圳大学 软件测试作业 #2

声明&#xff1a;本人上课摆烂选手&#xff0c;稍微听了下&#xff0c;答案仅供参考。 ———————— 1. 考虑下面这个代码&#xff0c;并回答以下的问题。 (a) 请画出上面代码的控制流程图。(20分) (b) 请画出上面代码的数据流程图。(10分) (c) 找出每个变量的定义使…

SpringBoot整合Mybatis并实现数据库增删改查

写在前面 Mybatis一个基于Java的持久层框架&#xff0c;它通过XML或注解的方式&#xff0c;将SQL语句和Java方法进行映射&#xff0c;使得开发者可以轻松地进行数据库操作。下面我会演示mybatis的配置与使用并实现数据库的增删改查。 1.准备测试数据 使用mybatis实现对数据库…

Java银系统/超市收银系统/智慧新零售/ERP进销存管理/线上商城/h5/小程序

>>>系统简述&#xff1a; 神点收银系统支持B2B2C多商户模式&#xff0c;系统基于前后端分离的架构&#xff0c;后端采用Java SpringBoot Mysql Mybatis Plus&#xff0c;前端基于当前流行的Uniapp、Element UI&#xff0c;支持小程序、h5。架构包含&#xff1a;会员端…

AI智能写作工具,AI写作助手大全

随着人工智能技术的快速发展&#xff0c;AI智能写作工具助手已成为学术研究、内容创作和商业文案等领域的重要辅助工具。它们不仅能够提高写作效率&#xff0c;还能激发创意灵感&#xff0c;为各行各业的专业人士提供了强大的支持。下面小编将为大家全面介绍目前市场上备受瞩目…

Mac(M1芯片)安装多个jdk,Mac卸载jdk

1.jdk下载 oracle官方链接&#xff1a;oracle官方下载链接 2.安装 直接下一步&#xff0c;下一步就行 3.查看是否安装成功 出现下图内容表示安装成功。 4.配置环境变量 open -e .bash_profile 路径建议复制过去 #刷新环境变量 source ~/.bash_profile 5.切换方法 6.jdk…

HTML+CSS 彩色浮雕按钮

效果演示 实现了一个彩色按钮特效&#xff0c;包括一个按钮&#xff08;button&#xff09;和一个前景色&#xff08;::before&#xff09;。按钮具有四种不同的颜色&#xff0c;当鼠标悬停在按钮上时&#xff0c;前景色会出现渐变效果&#xff0c;并且按钮的颜色、文本阴影和边…

【研究】AI大模型需要什么样的硬件?

关注AI大模型 x 硬件的两条思路 从22年11月OpenAI推出ChatGPT至今&#xff0c;我们看到Chatbot应用的能力不断增强&#xff0c;从最初的文字问答&#xff0c;迅速向具有自主记忆、推理、规划和执行的全自动能力的AI Agent发展。我们认为端侧智能是大模型发展的重要分支。建议投…

昇思25天学习打卡营第二天|张量

张量 Tensor 张量&#xff08;Tensor&#xff09;是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数&#xff0c;这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在 &#x1d45b;&#x1d45b; 维空间内&#xff0c;有  &#x1…

北尔Beijer软件iXDeveloper2触摸屏和使用说明手侧

北尔Beijer软件iXDeveloper2触摸屏和使用说明手侧

Python笔记 文件的写,追加,备份操作

一、文件的写操作 案例演示&#xff1a; # 1.打开文件 f open(python.txt,w)# 2.文件写入 f.write(hello world)# 3.内容刷新 f.flush() 注意&#xff1a; 直接调用write&#xff0c;内容并为真正的写入文件&#xff0c;二十会积攒在程序的内存中&#xff0c;称之为缓冲区…

SpringBoot控制反转和依赖注入

目录 一、内聚和耦合 二、分层解耦 三、具体实现 四、bean的组件扫描 五、bean注入 一、内聚和耦合 在了解分层解耦的概念之前我们我们要去先了解一下内聚和耦合。内聚&#xff1a;通常将的是软件中各个模块之间的功能联系。耦合衡量软件各个模块之间的依赖、关联的程度。一…

Lua网站开发之文件表单上传

这个代码示例演示如何上传文件或图片&#xff0c;获取上传信息及保存文件到本地。 local fw require("fastweb") local request require("fastweb.request") local response require("fastweb.response") local cjson require("cjson&q…

30-33、SpringBoot项目部署\属性配置方式\多环境开发(一个文件)\多环境分组(多个文件)

1、打包插件:和springboot的版本保持一致 根pom <build><plugins><!--打包插件--><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>3.1.3</versi…