关于Pytorch转换为MindSpore的一点建议

news2025/1/12 9:50:16

一、事先准备

必须要对Mindspore有一些了解,因为这个框架确实有些和其它流程不一样的地方,比如算子计算、训练过程中的自动微分,所以这两个课程要好好过一遍,官网介绍文档最好也要过一遍
1、零基础Mindspore:https://www.bilibili.com/video/BV1CS4y1z72r/?spm_id_from=333.337.search-card.all.click在这里插入图片描述 2、MindSpore进阶课程:https://www.bilibili.com/video/BV12W4y1t7yn/?spm_id_from=333.337.search-card.all.click
在这里插入图片描述

3、Mindspore教程:MindSpore教程 — MindSpore master documentation
在这里插入图片描述

对这些课程和文档过一遍后,可以去看几个数据加载和模型训练的案例
最好是自定义数据集加载,因为大多数据集都是表格或者其它,图像分类案例较少
跑一下几个案例,理解他们的这个过程

二、框架转换过程注意事项

框架转换主要有以下基本,拿转换医学影像分割的来讲述(pytorch-》Mindspore)
官网也是有给网络迁移部分的要点说明的,也可以好好看看
在这里插入图片描述

转换之前一定要理解自己原有网络当中的每一部分的处理、每一部分的数据形态和类型,这样转换起来比较容易

1、数据集导入

判断好数据集是什么类型,能否用快捷方式加载,如果不能就自定义数据集,然后用GeneratorDataset进行加载
数据加载类,注意最后返回的要是两部分值,前者为数据,后者为标签
在这里插入图片描述

一定要这样,因为GeneratorDataset需要这种形式,期间的计算,每一步可以看看有无问题,形态和原有网络保持一致

2、网络结构搭建

2.1 如果已经有算法,也有网络,那就一层的对比着看,保证每层输入输出一样

在这里插入图片描述

2.2 对应的网络中的API计算,大多都能对应上,主要有部分会有细节差异,需要去官网查询对应API,填写适应参数

如这里和pytorch的就不一样,mindspore中的scale_factor不能和bilinear一起,所有要替换为其它插值方式,另外插值法方式也会影响padding的值
在这里插入图片描述

就是要保证每层的输入输出都一致,计算要正常,如这里mindspore不写stride=2就会导致后面的计算出问题
在这里插入图片描述

2.3 一点一点的对比和尝试,必须要保证网络重每一步的计算前和计算后的数据形态一样

最终的输出也是要保持一致,数据经过网络得到预测值,预测值的shape注意保持一致

3、模型训练

一定要保证数据的准确,在pytorch内是什么形式在mindspore内也要是
对于梯度和loos的计算,多打印出来看一看,虽然pytorch和mindspore训练过程有所不同,但整体还是相似的
在这里插入图片描述

注意label的shape要和模型输出的logit一样,这样才能计算loss,这里可能会有维度不相同,那就去掉无关维度即可,mindspore里也有squeeze,多看看文档
流程就是,训练step内使用gard_fn,进行自动微分计算(这里mindspore用了这就不用梯度清零了),自动微分计算value_and_grad中又会调用前向传播函数,前向传播中涉及到loos的计算,一般只要loss输出没有问题,那么其它都是小事情
注意各项的形式,很容易理解的还是

4、训练和评估

这个过程就很简单了,只要前面定义好训练step和其他的什么优化器、损失函数还有前向传播网络什么的,那么这就很简单了,获取可迭代数据进行一个batch一个batch的训练就行了,loss可以计算可以输出,模型的评估上mindspore里面也有提供一些自定义的评估,看需要用到什么,先去搜搜看,看看如何使用的,直接套用即可
在这里插入图片描述

5、模型保存和调用推理

这部分就很简单了,按照格式定义即可

在这里插入图片描述

三、总结

整体来说,只要数据集构建没有问题,网络结构没有问题(需要计算测试)
那么框架转换就很简单了,因为训练的流程都大致相同,虽然mindspore里面没有梯度清零什么的
但是也有独特的自动微分梯度求导,这个多看几个案例,其实也是一套流程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1854341.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

pytest测试框架flaky插件重试失败用例

Pytest提供了丰富的插件来扩展其功能,本章介绍下插件flaky ,用于在测试用例失败时自动重新运行这些测试用例。与前面文章介绍的插件pytest-rerunfailures功能有些类似,但是功能上不如pytest-rerunfailures插件丰富。 flaky官方并没有明确pyt…

微软搁置水下数据中心项目——项目纳蒂克相比陆地服务器故障更少

“我的团队努力了,并且成功了,”COI负责人诺埃尔沃尔什说。 微软已悄然终止了始于2013年的水下数据中心(UDC)项目“纳蒂克”。该公司向DatacenterDynamics确认了这一消息,微软云运营与创新部门负责人诺埃尔沃尔什表示…

多路h265监控录放开发-(12)完成全部开始录制和全部停止录制代码

xviewer.h 新增 public: void StartRecord();//126 开始全部摄像头录制 void StopRecord();//126 停止全部摄像头录制 xviewer.cpp 新增 //视频录制 static vector<XCameraRecord*> records;//126void XViewer::StartRecord() //开始全部摄像头录制 126 {StopRecord…

vuex的深入学习[基于vuex3]----篇(二)

store对象的创建 store的传递图 创建语句索引 创建vuex的语句为new Vuex.Store({…})Vuex的入口文件是index.js,store是index.js导出的store类store类是store.js文件中定义的。 Store的构造函数constructor 判断vuex是否被注入&#xff0c;就是将vue挂载在window对象上&am…

[技术笔记] 元器件采购之Flash的国内、外厂商Top5

国外Top5 1、Micron&#xff08;镁光&#xff09;半导体 2、Toshiba&#xff08;东芝&#xff09; 3、Hynix&#xff08;海力士&#xff09; 4、Samsung&#xff08;三星&#xff09; 5、Intel&#xff08;因特尔&#xff09; 6、SanDisk&#xff08;闪迪&#xff09; 7…

瑞_MongoDB_MongoDB副本集

文章目录 1 MongoDB副本集-Replica Sets1.1 简介1.2 副本集的三个角色1.3 副本集架构目标1.4 副本集的创建1.4.1 创建主节点1.4.2 创建副本节点1.4.3 创建仲裁节点1.4.4 初始化配置副本集和主节点1.4.5 查看副本集的配置内容 rs.conf()1.4.6 查看副本集状态1.4.7 添加副本从节点…

1.4 Kettle 数据同步工具详细教程

工具介绍 一、概述 Kettle&#xff0c;又名 Pentaho Data Integration&#xff08;PDI&#xff09;&#xff0c;是一个开源的数据集成工具&#xff0c;最初由 Pentaho 公司开发。它能够从多种数据源提取、转换并加载&#xff08;ETL&#xff09;数据&#xff0c;适用于数据仓…

2023-2024 学年第二学期小学数学六年级期末质量检测模拟(制作:王胤皓)(90分钟)

word效果预览&#xff1a; 一、我会填 1. 1.\hspace{0.5em} 1. 一个多位数&#xff0c;亿位上是次小的素数&#xff0c;千位上是最小的质数的立方&#xff0c;十万位是 10 10 10 和 15 15 15 的最大公约数&#xff0c;万位是最小的合数&#xff0c;十位上的数既不是质数也…

(Amazing!) 通过 vfox 在 Windows 上安装管理多个 Erlang/OTP 和 Elixir 的版本

大概一个多月前, 我写了篇关于如何使用跨平台版本管理工具 vfox 在 Linux 系统下安装管理多个 Erlang/OTP 版本的文章 -> 通过 vfox 安装管理多版本 Erlang 和 Elixir. 文章使用的示范操作系统是 Ubuntu 20.04 Linux 操作系统. 最近 vfox-erlang 和 vfox-elixir 插件的最新…

理解 iOS 开发中的 NS_ENUM 和 NS_OPTIONS

在开发 iOS 应用程序时&#xff0c;理解 NS_ENUM 和 NS_OPTIONS 的使用至关重要&#xff0c;因为它们在定义和管理枚举和选项方面起着重要作用。在本文中&#xff0c;我们将深入探讨 NS_ENUM 和 NS_OPTIONS 之间的区别、使用场景以及如何有效地实现它们。 NS_ENUM NS_ENUM 用…

Python - 调用函数时检查参数的类型是否合规

前言 阅读本文大概需要3分钟 说明 在python中&#xff0c;即使加入了类型注解&#xff0c;使用注解之外的类型也是不报错的 def test(uid: int):print(uid)test("999")但是我就想要类型不对就直接报错确实可以另辟蹊径&#xff0c;实现报错&#xff0c;似乎有强…

网络编程篇:HTTP协议

一.预备知识 在客户端访问服务端时&#xff0c;要用ipport&#xff0c;但是在日常用户访问服务端的时候&#xff0c;并不会直接使用ip&#xff0c;而是使用域名&#xff0c;比如&#xff1a;百度(www.baidu,com)。 …

【机器学习】音乐大模型的深入探讨——当机器有了创意,是机遇还是灾难?

&#x1f440;国内外音乐大模型基本情况&#x1f440; ♥概述♥ ✈✈✈如FreeCompose、一术科技等&#xff0c;这些企业专注于开发人工智能驱动的语音、音效和音乐生成工具&#xff0c;致力于利用核心技术驱动文化产业升级。虽然具体公司未明确提及&#xff0c;但可以预见的是…

MFC学习--CListCtrl复选框以及选择

如何展示复选框 //LVS_EX_CHECKBOXES每一行的最前面带个复选框//LVS_EX_FULLROWSELECT整行选中//LVS_EX_GRIDLINES网格线//LVS_EX_HEADERDRAGDROP列表头可以拖动m_listctl.SetExtendedStyle(LVS_EX_FULLROWSELECT | LVS_EX_CHECKBOXES | LVS_EX_GRIDLINES); 全选&#xff0c;全…

.hmallox勒索病毒解密方法|勒索病毒解决|勒索病毒恢复|数据库修复

导言&#xff1a; 在当今数字化时代&#xff0c;勒索病毒已经成为网络安全的一大威胁&#xff0c;其中包括了最近出现的.hmallox勒索病毒。这类恶意软件不仅能够对计算机系统进行加密&#xff0c;还会要求用户支付赎金以换取解密密钥&#xff0c;给个人用户和企业带来了严重的…

八大排序之希尔排序

一、概念及其介绍 希尔排序(Shell Sort)是插入排序的一种&#xff0c;它是针对直接插入排序算法的改进。 希尔排序又称缩小增量排序&#xff0c;因 DL.Shell 于 1959 年提出而得名。 它通过比较相距一定间隔的元素来进行&#xff0c;各趟比较所用的距离随着算法的进行而减小…

分类接口开发

文章目录 1.查询所有一级分类1.sun-club-application-controller 控制层1.SubjectCategoryController.java 定义基础的queryPrimaryCategory&#xff0c;调用领域层 2.sun-club-domain 领域层1.SubjectCategoryDomainService.java2.SubjectCategoryConverter.java3.SubjectCate…

PINN解偏微分方程实例4

PINN解偏微分方程实例4 一、正问题1. Diffusion equation2. Burgers’ equation3. Allen–Cahn equation4. Wave equation 二、反问题1. Burgers’ equation3. 部分代码示例 本文使用 PINN解偏微分方程实例1中展示的代码求解了以四个具体的偏微分方程&#xff0c;包括Diffusio…

编程精粹—— Microsoft 编写优质无错 C 程序秘诀 07:编码中的假象

这是一本老书&#xff0c;作者 Steve Maguire 在微软工作期间写了这本书&#xff0c;英文版于 1993 年发布。2013 年推出了 20 周年纪念第二版。我们看到的标题是中译版名字&#xff0c;英文版的名字是《Writing Clean Code ─── Microsoft’s Techniques for Developing》&a…

C语言入门课程学习笔记8:变量的作用域递归函数宏定义交换变量

C语言入门课程学习笔记8 第36课 - 变量的作用域与生命期&#xff08;上&#xff09;第37课 - 变量的作用域与生命期&#xff08;下&#xff09;实验—局部变量的作用域实验-变量的生命期 第38课 - 函数专题练习第39课 - 递归函数简介实验小结 第40课 - C 语言中的宏定义实验小结…