4.1 四个子空间的正交性

news2025/1/13 15:33:49

一、四个子空间的正交性

如果两个向量的点积为零,则两个向量正交: v ⋅ w = v T w = 0 \boldsymbol v\cdot\boldsymbol w=\boldsymbol v^T\boldsymbol w=0 vw=vTw=0。本章着眼于正交子空间正交基正交矩阵。两个子空间的中的向量,一组基中的向量和 Q Q Q 中的列向量,它们所有的配对向量都是正交的。对于直角三角形有 a 2 + b 2 = c 2 a^2+b^2=c^2 a2+b2=c2,两条直角边分别是 v \boldsymbol v v w \boldsymbol w w

正交向量 v T w = 0   且   ∣ ∣ v ∣ ∣ 2 + ∣ ∣ w ∣ ∣ 2 = ∣ ∣ v − w ∣ ∣ 2 \pmb{正交向量}\kern 35pt\boldsymbol v^T\boldsymbol w=0\,且\,||\boldsymbol v||^2+||\boldsymbol w||^2=||\boldsymbol v-\boldsymbol w||^2 正交向量vTw=0∣∣v2+∣∣w2=∣∣vw2

v T w = w T v = 0 \boldsymbol v^T\boldsymbol w=\boldsymbol w^T\boldsymbol v=0 vTw=wTv=0 时,右边 ( v + w ) T ( v − w ) = v T v + w T w (\boldsymbol v+\boldsymbol w)^T(\boldsymbol v-\boldsymbol w)=\boldsymbol v^T\boldsymbol v+\boldsymbol w^T\boldsymbol w (v+w)T(vw)=vTv+wTw
第三章我们主要是讨论 A x = b A\boldsymbol x=\boldsymbol b Ax=b,我们需要列空间和零空间,然后视线转到 A T A^T AT,会需要另外两个子空间。这四个基本子空间揭示了矩阵实际上在做什么。
矩阵乘向量: A A A x \boldsymbol x x:第一层只有数字;第二层 A x A\boldsymbol x Ax 表示的是列向量的组合;第三层展示了子空间。在学习 Figure4.2 的大图之后,我们将看到它的全貌。
将子空间放在一起可以显示出 A A A x \boldsymbol x x 隐藏的一些事实,两个子空间之间的 90 ° 90° 90° 角就是我们将要讨论的新的主题。
行空间垂直于零空间 A A A 的每一行垂直于 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 的每一个解。得到 Figure 4.2 左侧的 90 ° 90° 90° 角。子空间的垂直性是线性代数基本定理的第二部分。
列空间垂直于 A T A^T AT 的零空间。当 b \boldsymbol b b 不在列空间中,此时将无法求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b,那么 A T A^T AT 的零空间将展现出它的优势。它包含有 “最小二乘” 解法的误差 e = b − A x \boldsymbol e=\boldsymbol b-A\boldsymbol x e=bAx。最小二乘法是线性代数在本章的关键应用。
线性代数基本定理的第一部分给出了子空间的维度。行空间与列空间有相同的维度 r r r,剩下两个零空间的维度分别是 n − r n-r nr m − r m-r mr。现在我们将证明行空间与零空间是 R n R^n Rn 中的正交子空间
定义 \kern 10pt 如果向量空间中的两个子空间 V \boldsymbol V V W \boldsymbol W W 有:任意 V \boldsymbol V V 中的向量 v \boldsymbol v v 和任意 W \boldsymbol W W 中的向量 w \boldsymbol w w 都垂直,则 V \boldsymbol V V W \boldsymbol W W 正交:

正交子空间 对于所有   V   中的向量   v   和所有   W   中的向量   w   都有   v T w = 0 \pmb{正交子空间}\kern 30pt对于所有\,\boldsymbol V\,中的向量 \,\boldsymbol v\,和所有\,\boldsymbol W\,中的向量\,\boldsymbol w\,都有\,\boldsymbol v^T\boldsymbol w=0 正交子空间对于所有V中的向量v和所有W中的向量w都有vTw=0

例1】房间中的地板(延伸到无限远)是一个子空间 V \boldsymbol V V,两面墙的交线是一个子空间 W \boldsymbol W W(一维)。这两个子空间是正交的。两面墙交线上的每个向量与地板上的每个向量都垂直。
例2】两面墙看起来垂直,但是这两个子空间不是正交的!它们的交线同时位于 V \boldsymbol V V W \boldsymbol W W,这条交线与它自身并不垂直。两个平面( R 3 \pmb{\textrm R}^3 R3 中的两个 2 2 2 维平面)不可能是正交的子空间。
当一个向量同时存在于两个正交的子空间中,那么它一定是零向量,它垂直于它本身,即是 v \boldsymbol v v 也是 w \boldsymbol w w,所以有 v T v = 0 \boldsymbol v^T\boldsymbol v=0 vTv=0,它只能是零向量。

在这里插入图片描述
线性代数的重要例子来源于四个基本子空间。零是零空间与行空间的唯一交点,此外, A A A 的零空间与行空间是 90 ° 90° 90° 相交。我们可以直接从 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 得到这个关键事实:

因为 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,所以有 A A A 零空间中的每个向量 x \boldsymbol x x 垂直于 A A A 的每一行。零空间 N ( A ) \pmb N(A) N(A) 和行空间 C ( A T ) \pmb C(A^T) C(AT) R n \pmb {\textrm R}^n Rn 中的正交子空间

为什么 x \boldsymbol x x 与这些行垂直呢,看 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,每行乘 x \boldsymbol x x

A x = [ row    1 ⋮ row    m ] [   x   ] = [ 0 ⋮ 0 ] ← ( row    1 ) ⋅ x   是零   ← ( row    m ) ⋅ x   是零 ( 4.1.1 ) A\boldsymbol x=\begin{bmatrix}\pmb{\textrm{row\,\,1}}\\\vdots\\{\pmb{\textrm{row}\,\,m}}\end{bmatrix}\begin{bmatrix}\,\\\boldsymbol x\\\,\end{bmatrix}=\begin{bmatrix}0\\\vdots\\0\end{bmatrix}\kern 10pt\begin{matrix}\leftarrow&(\pmb{\textrm{row\,\,1}})\cdot\boldsymbol x\,是零\\\,\\\leftarrow&(\pmb{\textrm{row}\,\,m})\cdot\boldsymbol x\,是零\end{matrix}\kern 25pt(4.1.1) Ax= row1rowm x = 00 (row1)x是零(rowm)x是零(4.1.1)

第一个方程表明行 1 1 1 垂直于 x \boldsymbol x x,最后一个方程表明行 m m m 垂直于 x \boldsymbol x x。每一行与 x \boldsymbol x x 的点积都是零,则 x \boldsymbol x x 也垂直于行的每种组合。整个行空间 C ( A T ) \pmb C(A^T) C(AT) 与零空间 N ( A ) \pmb N(A) N(A) 正交。
第二种证明正交的方式使用矩阵的缩写:行空间的向量就是行的线性组合 A T y A^T\boldsymbol y ATy,做 A T y A^T\boldsymbol y ATy 与零空间任意向量 x \boldsymbol x x 的点积,可以得到这些向量是垂直的: 零空间与行空间正交 x T ( A T y ) = ( A x ) T y = 0 T y = 0 ( 4.1.2 ) \pmb{零空间与行空间正交}\kern 15pt\boldsymbol x^T(A^T\boldsymbol y)=(A\boldsymbol x)^T\boldsymbol y=\boldsymbol 0^T\boldsymbol y=0\kern 20pt(4.1.2) 零空间与行空间正交xT(ATy)=(Ax)Ty=0Ty=0(4.1.2)第一个证明很直观,从方程(4.1.1)中可以直接看到 A A A 的这些行乘 x \boldsymbol x x 得到零。第二个证明表示了为什么 A A A A T A^T AT 都在基础定理中。

例3 A A A 的行垂直于零空间中的向量 x = ( 1 , 1 , − 1 ) \boldsymbol x=(1,1,-1) x=(1,1,1) A x = [ 1 3 4 5 2 7 ] [ 1 1 − 1 ] = [ 0 0 ] 得点积 1 + 3 − 4 = 0 5 + 2 − 7 = 0 A\boldsymbol x=\begin{bmatrix}1&3&4\\5&2&7\end{bmatrix}\begin{bmatrix}\kern 7pt1\\\kern 7pt1\\-1\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\kern 10pt得点积\kern 5pt\begin{matrix}1+3-4=0\\5+2-7=0\end{matrix} Ax=[153247] 111 =[00]得点积1+34=05+27=0现在我们将实现转向另外两个子空间。此例中,列空间是整个 R 2 \boldsymbol {\textrm R}^2 R2 A T A^T AT 的零空间只有零向量(与任意向量正交)。 A A A 的列空间和 A T A^T AT 的零空间总是正交的子空间。

A T A^T AT 零空间中的每个向量 y \boldsymbol y y 垂直于 A A A 的每一列。左零空间 N ( A T ) \pmb N(A^T) N(AT) 和列空间 C ( A ) \pmb C(A) C(A) R m \textrm{\textrm R}^m Rm 中的正交子空间

因为 A T A^T AT 的零空间与 A T A^T AT 的行空间正交,而 A T A^T AT 的零空间就是 A A A 的左零空间, A T A^T AT 的行空间就是 A A A 的列空间。证毕!
A T y = 0 A^T\boldsymbol y=\boldsymbol 0 ATy=0 可以得到一个可视化的证明。 A A A 的每一列乘 y \boldsymbol y y 都得到 0 0 0 C ( A ) ⊥ N ( A T ) A T y = [ ( column    1 ) T ⋯ ( column    n ) T ] [ y   ] = [ 0   ˙ 0 ] ( 4.2.3 ) \pmb C(A)\perp \pmb N(A^T)\kern 15ptA^T\boldsymbol y=\begin{bmatrix}(\pmb{\textrm{column}\,\,1})^T\\\cdots\\(\pmb{\textrm{column}\,\,n})^T\end{bmatrix}\begin{bmatrix}\\\boldsymbol y\\\,\end{bmatrix}=\begin{bmatrix}0\\\dot\ \\0\end{bmatrix}\kern 25pt(4.2.3) C(A)N(AT)ATy= (column1)T(columnn)T y = 0 ˙0 (4.2.3) y \boldsymbol y y A A A 的每一列点积都是零,则有 A A A 左零空间中的向量 y \boldsymbol y y 垂直于 A A A 的每一列,即垂直于列空间。
在这里插入图片描述

二、正交补

重要: 基本子空间不仅仅是正交(成对)而已,它们也要有合适的维度。两条直线可能在 R 3 \textrm{\pmb R}^3 R3 空间中垂直,但是这些直线不可能是 3 × 3 3\times3 3×3 矩阵的行空间和零空间。这两天直线的维度都是 1 1 1,相加起来是 2 2 2,但是正确的维度 r r r n − r n-r nr 加起来一定是 n = 3 n=3 n=3
3 × 3 3\times3 3×3 矩阵的基本子空间的维度可能是 2 2 2 1 1 1,或 3 3 3 0 0 0,这些成对的子空间不仅仅是正交,它们是正交补。
定义: 子空间 V \pmb V V正交补包含所有 V \pmb V V 垂直的向量。这个子空间的正交补写成 V ⊥ \pmb V^{\perp} V(读作 “ V \pmb V V perp”)。
根据这个定义,零空间是行空间的正交补,每个垂直于所有行的向量 x \boldsymbol x x 都满足 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0,它也在零空间中。
反过来也是正确的,如果 v \boldsymbol v v 与零空间正交,它一定在行空间中。否则我们可以将 v \boldsymbol v v 加入矩阵当做额外的一行,这样没有改变它的零空间,但是行空间会变大,将违反 r + ( n − r ) = n r+(n-r)=n r+(nr)=n 的法则。结论是零空间的正交补 N ( A ) ⊥ \pmb N(A)^{\perp} N(A) 就是行空间 C ( A T ) \pmb C(A^T) C(AT)
同样的方法,左零空间和列空间是 R m \pmb{\textrm R}^m Rm 的正交补。它们的维度 r r r m − r m-r mr 加起来得到全维度 m m m

线性代数基本定理,第二部分 N ( A )   是行空间   C ( A T )   的正交补 ( 在   R n   中 ) N ( A T )   是列空间   C ( A )   的正交补 ( 在   R m   中 ) \pmb{线性代数基本定理,第二部分}\\{\pmb N(A)\,\pmb{是行空间}\,\pmb C(A^T)\,\pmb{的正交补(在}\,\textrm{\pmb{R}}^n\,\pmb{中)}}\\\pmb N(A^T)\,\pmb{是列空间}\,\pmb C(A)\,\pmb{的正交补(在}\,\textrm{\pmb R}^m\,\pmb{中)} 线性代数基本定理,第二部分N(A)是行空间C(AT)的正交补(Rn)N(AT)是列空间C(A)的正交补(Rm)

第一部分给出了子空间的维度,第二部分给出了它们之间的 90 ° 90° 90° 角。补充的重点是每一个 x \boldsymbol x x 都可以分成一个行空间分量 x r \boldsymbol x_r xr 和一个零空间分量 x n \boldsymbol x_n xn。Figure 4.3 显示了当 A A A x = x r + x n \boldsymbol x=\boldsymbol x_r+\boldsymbol x_n x=xr+xn 时发生了什么 A x = A x r + A x n A\boldsymbol x=A\boldsymbol x_r+A\boldsymbol x_n Ax=Axr+Axn 零空间的分量得到零: A x n = 0 行空间的分量到列空间: A x r = A x 零空间的分量得到零:A\boldsymbol x_n=\boldsymbol 0\\行空间的分量到列空间:A\boldsymbol x_r=A\boldsymbol x 零空间的分量得到零:Axn=0行空间的分量到列空间:Axr=Ax每个向量都到列空间!左乘 A A A 不会做其它的事情,除此之外,列空间的每个向量 b \boldsymbol b b 仅来自一个行空间的唯一向量 x r \boldsymbol x_r xr。证明:如果 A x r = A x r ′ A\boldsymbol x_r=A\boldsymbol x_r' Axr=Axr,它们的差 x r − x r ′ \boldsymbol x_r-\boldsymbol x_r' xrxr 在零空间中,也会在行空间中,因为 x r \boldsymbol x_r xr x r ′ \boldsymbol x_r' xr 都来自与行空间。它们的差必定为零,因为零空间与行空间是垂直的,因此 x r = x r ′ \boldsymbol x_r=\boldsymbol x_r' xr=xr
如果我们抛开两个零空间,则 A A A 中会隐藏有一个 r × r r\times r r×r 的可逆矩阵,从行空间到列空间, A A A 是可逆的
例4】每个秩 r r r 的矩阵都有一个 r × r r\times r r×r 的可逆子矩阵: A = [ 3 0 0 0 0 0 5 0 0 0 0 0 0 0 0 ] 包含子矩阵 [ 3 0 0 5 ] A=\begin{bmatrix}3&0&0&0&0\\0&5&0&0&0\\0&0&0&0&0\end{bmatrix}\kern 5pt包含子矩阵\kern 5pt\begin{bmatrix}3&0\\0&5\end{bmatrix} A= 300050000000000 包含子矩阵[3005]另外 11 11 11 0 0 0 是负责零空间的。 B B B 的秩也为 r = 2 r=2 r=2 B = [ 1 2 3 4 5 1 2 4 5 6 1 2 4 5 6 ] 包含子矩阵 [ 1 3 1 4 ] 在主元行和主元列 B=\begin{bmatrix}1&2&3&4&5\\1&2&4&5&6\\1&2&4&5&6\end{bmatrix}\kern 5pt包含子矩阵\kern 5pt\begin{bmatrix}1&3\\1&4\end{bmatrix}在主元行和主元列 B= 111222344455566 包含子矩阵[1134]在主元行和主元列当我们选择了正确的 R n \pmb {\textrm R}^n Rn R m \textrm {\pmb R}^m Rm 的基,每个矩阵都可以对角化。这个奇异值分解(Singular Value Decomposition)在应用中已经非常重要。
我们重复下一个事实, A A A 的行不可能在 A A A 的零空间中(除了零向量)。唯一都存在于两个正交子空间的向量是零向量。 如果向量   v   正交于它本身,则   v   是零向量。 \pmb{如果向量\,\boldsymbol v\,正交于它本身,则\,\boldsymbol v\,是零向量。} 如果向量v正交于它本身,则v是零向量。在这里插入图片描述

三、画出大图

大图要显示出这些子空间的正交性。Figure4.4是一条直线与一个平面的正交图,它们是在三维空间中。
在这里插入图片描述

四、从子空间中组合基

基是线性无关的向量,它们可以张成向量空间。正常情况下对于基来说我们要检验以下两个性质,当其中一个成立时是可以退出另外一个的:

R n \pmb{\textrm R}^n Rn 中任意 n n n 个无关向量一定可以张成空间 R n \textrm{\pmb R}^n Rn,因此它们是一组基。
任何可以张成空间 R n \textrm{\pmb R}^n Rn n n n 个向量一定是无关的,所以它们是一组基。

如果向量的数量是正确的,那么基的一个性质可以推出另外一个性质,这对于任何向量空间都是成立的,我们更多关注的是 R n \pmb {\textrm R}^n Rn。当这些向量是 n × n n\times n n×n 方阵 A A A 的列时,我们可得到下面两个事实:

如果 A A A n n n 列是无关的,它们张成 R n \pmb{\textrm R}^n Rn,所以 A x = b A\boldsymbol x=\boldsymbol b Ax=b 有解。
如果这 n n n 个列张成 R n \pmb{\textrm R}^n Rn,则它们是无关的, A x = b A\boldsymbol x=\boldsymbol b Ax=b 有唯一解。

唯一性推论到存在性且存在性推论到唯一性, A A A 是可逆的。如果没有自由变量,则解 x \boldsymbol x x 是唯一的,那么一定有 n n n 个主元列,通过回代可以求解 A x = b A\boldsymbol x=\boldsymbol b Ax=b(解存在)。
从反方向开始,假设 A x = b A\boldsymbol x=\boldsymbol b Ax=b 对于任意的 b \boldsymbol b b 都有解(存在解),那么消元后没有零行,有 n n n 个主元没有自由变量。零空间仅包含 x = 0 \boldsymbol x=\boldsymbol 0 x=0(唯一性)。
对于行空间和零空间的基来说,有 r + ( n − r ) = n r+(n-r)=n r+(nr)=n 个向量,这 n n n 个向量是无关的,它们张成 R n \pmb{\textrm R}^n Rn

每个   x   都是行空间   x r 和零空间   x n 的和   x r + x n 。 每个\,\boldsymbol x\,都是行空间\,\boldsymbol x_r和零空间\,\boldsymbol x_n的和\,\boldsymbol x_r+\boldsymbol x_n。 每个x都是行空间xr和零空间xn的和xr+xn

Figure 4.3 画出了正交补的关键点 —— 它们的维度相加是 n n n,所有的向量都可以通过正交补来解释。

例5 A = [ 1 2 3 6 ] A=\begin{bmatrix}1&2\\3&6\end{bmatrix} A=[1326] x = [ 4 3 ] \boldsymbol x=\begin{bmatrix}4\\3\end{bmatrix} x=[43] 分成 x r + x n = [ 2 4 ] + [ 2 − 1 ] \boldsymbol x_r+\boldsymbol x_n=\begin{bmatrix}2\\4\end{bmatrix}+\begin{bmatrix}\kern 7pt2\\-1\end{bmatrix} xr+xn=[24]+[21]
向量 [ 2 4 ] \begin{bmatrix}2\\4\end{bmatrix} [24] 在行空间,它的正交向量 [ 2 − 1 ] \begin{bmatrix}\kern 7pt2\\-1\end{bmatrix} [21] 在零空间中。

五、主要内容总结

  • 如果 V \boldsymbol V V 中的每个向量 v \boldsymbol v v W \boldsymbol W W 中的每个向量 w \boldsymbol w w 都正交,则子空间 V \boldsymbol V V W \boldsymbol W W 正交。
  • 如果 W \boldsymbol W W 中包含全部垂直于 V \boldsymbol V V 的向量(反之亦然),则 V \boldsymbol V V W \boldsymbol W W 是正交补。在 R n \textrm {\pmb R}^n Rn 中, V \boldsymbol V V W \boldsymbol W W 的维度相加是 n n n
  • 零空间 N ( A ) \pmb N(A) N(A) 和行空间 C ( A T ) \pmb C(A^T) C(AT) 是正交补,维度是 ( n − r ) + r = n (n-r)+r=n (nr)+r=n,相似的,左零空间 N ( A T ) \pmb N(A^T) N(AT) 和列空间 C ( A ) \pmb C(A) C(A) 是正交补,它们的维度是 ( m − r ) + r = m (m-r)+r=m (mr)+r=m
  • R n \textrm{\pmb R}^n Rn 中任意 n n n 个无关的向量可以张成 R n \pmb{\textrm R}^n Rn;任意可以张成 R n \pmb{\textrm R}^n Rn n n n 个向量是无关的。

六、例题

例6】假设 S \pmb S S 是 9 维空间 R 9 \textrm{\pmb R}^9 R9 中的 6 6 6 维子空间:
(a)与 S \pmb S S 正交的子空间的维度可能是多少?
(b) S \pmb S S 的正交补 S ⊥ \pmb S^{\perp} S 的维度可能是多少?
(c)行空间是 S \pmb S S 的矩阵 A A A 可能的最小形状大小是多少?
(d)零空间是 S ⊥ \pmb S^{\perp} S 的矩阵 B B B,它的形状可能的最小大小是多少?
解: (a)如果 S \pmb S S R 9 \textrm{\pmb R}^9 R9 中的 6 6 6 维子空间,那么与 S \pmb S S 正交的子空间的维度可能是 0 , 1 , 2 , 3 0,1,2,3 0,1,2,3
(b)正交补 S ⊥ \pmb S^{\perp} S 是最大的正交子空间,它的维度是 3 3 3
(c)最小的矩阵 A A A 形状是 6 × 9 6\times 9 6×9。(它的 6 6 6 行是 S \pmb S S 的一组基)。
(d)最小的矩阵 B B B 形状是 6 × 9 6\times9 6×9。(与(c)答案一样)
如果 B B B 的新行第 7 7 7 行是 A A A 6 6 6 行的组合,那么 B B B A A A 有相同的行空间,也有相同的零空间。 A x = 0 A\boldsymbol x=\boldsymbol 0 Ax=0 的特殊解 s 1 , s 2 , s 3 \boldsymbol s_1,\boldsymbol s_2,\boldsymbol s_3 s1,s2,s3 同样也是 B x = 0 B\boldsymbol x=\boldsymbol 0 Bx=0 的特殊解。消元后 B B B 的第 7 7 7 行将会变成零行。

例7】方程 x − 3 y − 4 z = 0 x-3y-4z=0 x3y4z=0 描述了 R 3 \textrm {\pmb R}^3 R3 中的一个平面 P \pmb P P(实际上是一个子空间)。
(a)平面 P \pmb P P 是哪个 1 × 3 1\times3 1×3 的矩阵 A A A 的零空间?
(b)找到 x − 3 y − 4 z = 0 x-3y-4z=0 x3y4z=0 特殊解构成的一组基 s 1 , s 2 \boldsymbol s_1,\boldsymbol s_2 s1,s2(它们会是零空间矩阵 N N N 的列)。
(c)找到垂直于 P \pmb P P 的直线 P ⊥ \pmb P^{\perp} P 的一组基。
解:(a) A = [ 1 − 3 − 4 ] A=\begin{bmatrix}1&-3&-4\end{bmatrix} A=[134]
(b) s 1 = [ 3 1 0 ] , s 2 = [ 4 0 1 ] \boldsymbol s_1=\begin{bmatrix}3\\1\\0\end{bmatrix},\kern 5pt\boldsymbol s_2=\begin{bmatrix}4\\0\\1\end{bmatrix} s1= 310 ,s2= 401
(c) [ 1 − 3 − 4 ] \begin{bmatrix}\kern 7pt1\\-3\\-4\end{bmatrix} 134

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1854039.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【2024最新版】Java JDK安装配置全攻略:图文详解

目录 1. 引言2. 准备工作2.1 **确定操作系统**2.2 **检查系统要求**2.3 **下载JDK安装包**3. 安装步骤(以Windows系统为例)4. 配置环境变量4.1 jdk配置验证4.2 **配置JAVA_HOME环境变量**4.3 **配置Path环境变量**4.4 验证jdk是否配置成功 5. 结语 1. 引…

MySQL命名规范(自用)

MtySQL命名规范 基本通用规范 1.【推荐】关键字必须大写 所有关键字必须大写,如:INSERT、UPDATE、DELETE、SELECT及其子句,IF……ELSE、CASE、DECLARE等 2.【强制】字段和建表必须写备注 COMMENT写备注 3.【强制】字母数字下划线 采用26个英…

CentOS 7、Debian、Ubuntu,这些是什么意思

CentOS 7、Debian、Ubuntu 都是基于 Linux 内核的操作系统,它们各自有不同的特性和用途。以下是对它们的详细解释: CentOS 7 CentOS(Community ENTerprise Operating System) 是一个基于开源的 Linux 发行版。CentOS 7 是 CentOS …

JavaScript的学习之旅之初始JS

目录 一、认识三个常见的js代码 二、js写入的第二种方式 三、js里内外部文件 一、认识三个常见的js代码 <script>//写入js位置的第一个地方// 控制浏览器弹出一个警告框alert("这是一个警告");// 在计算机页面输入一个内容&#xff08;写入body中&#xff…

支付系统的渠道路由架构设计

图解支付系统的渠道路由设计 渠道路由是引导流量路径的关键&#xff0c;其设计至关重要。本文详解渠道路由概念、必要性及形态&#xff0c;并分享一个高效实用的基于规则的渠道路由设计方案。 注&#xff1a;有些公司称渠道为通道&#xff0c;都是一个意思&#xff0c;为方便起…

(南京观海微电子)——DC-DC和LDO的原理及应用区别

LDO: 低压差线性稳压器&#xff0c;故名思意为线性的稳压器&#xff0c;仅能使用在降压应用中&#xff0c;也就是输出电压必需小于输入电压。 优点&#xff1a;稳定性好&#xff0c;负载响应快&#xff0c;输出纹波小。 缺点&#xff1a; 效率低&#xff0c;输入输出的电压…

Spring响应式编程之Reactor介绍

Reactor介绍 1、异步执行技术2、实现方式 响应式编程&#xff08;Reactive Programming&#xff09;是一种面向数据流和变化传播的编程范式。Java中的Reactor是一个用于响应式编程的库&#xff0c;它建立在Reactive Streams规范之上&#xff0c;旨在帮助开发者构建非阻塞的、高…

vue登陆密码加密,java后端解密

前端 安装crypto-js npm install crypto-js加密 //引入crypto-js import CryptoJS from crypto-js;/** ---密码加密 start--- */ const SECRET_KEY CryptoJS.enc.Utf8.parse("a15q8f6s5s1a2v3s"); const SECRET_IV CryptoJS.enc.Utf8.parse("a3c6g5h4v9sss…

项目-博客驿站测试报告

测试用例设计 功能测试 该部分主要围绕对于博客系统的增删改查, 文章通过性审核, 关注功能等进行测试, 还进行了其它一些探索性的测试. 以上是作者设计的全部用例. BUG发现: 问题1: 当多端同时操作同一篇文章BUG 环境: Windows11, Edge和Chrome浏览器 复现步骤: 1.先使用Edg…

《三国:谋定天下》成为了SLG游戏现象级的成功案例

原标题&#xff1a;《三国&#xff1a;谋定天下》引领SLG游戏新潮流&#xff0c;B站股价五个飙升了30% 易采游戏网6月23日&#xff1a;B站作为年轻人喜爱的文化社区和视频平台&#xff0c;再次用一款新的游戏证明了其在游戏发行领域的独到眼光与强大实力。最近大火的策略角色扮…

VBA学习(17):使用条件格式制作Excel聚光灯

今天给大家分享的表格小技巧是制作聚光灯。 先说一下啥是聚光灯。所谓聚光灯&#xff0c;可以简单理解为对工作表的行列填充颜色&#xff0c;突出显示被选中的单元格&#xff0c;仿佛该单元格被聚光灯照亮似的。聚光灯有助于肉眼识别所选中的单元格或区域&#xff0c;提高数据…

Repair LED lights

Repair LED lights 修理LED灯&#xff0c;现在基本用灯带&#xff0c;就是小型LED灯串联一起的 1&#xff09;拆旧灯条&#xff0c;这个旧的是用螺丝拧的产品 电闸关掉。 2&#xff09;五金店买一个&#xff0c;这种是磁铁吸附的产品 现在好多都是铝线啊。。。 小部件&#x…

2024最新最全的车载测试教程__各模块测试用例

二、设计用例方法 1.测试用例设计前&#xff1a; a.仔细认真研读prd、理解prd b.质疑prd、有困惑或者想法的点做好记录&#xff0c;可以一次性和产品沟通 2.设计中&#xff1a; 成282 a.根据结构化思维&#xff0c;设计xmind i全链路正向功能点、子链路功能点 ⅱ.考虑业…

15.树形虚拟列表实现(支持10000+以上的数据)el-tree(1万+数据页面卡死)

1.问题使用el-tree渲染的树形结构&#xff0c;当数据超过一万条以上的时候页面卡死 2.解决方法&#xff1a; 使用vue-easy-tree来实现树形虚拟列表&#xff0c;注意&#xff1a;vue-easy-tree需要设置高度 3.代码如下 <template><div class"ve-tree" st…

大模型参数高效微调学习笔记

大模型参数高效微调学习笔记 github地址 billbill链接 1.分类 图中有五个大类&#xff1a; selective&#xff08;选择性微调&#xff09;&#xff1a;BitFit&#xff0c;Attention Tuningsoft prompts&#xff08;提示微调&#xff09;&#xff1a;Prompt-tuning&#xff0c…

实战指南:部署Elasticsearch 8.4.1与Kibana 8.4.1并集成IK分词器

首先拉取elasticsearch和kibana镜像 docker pull elasticsearch:8.4.1 docker pull kibana:8.4.1如果遇到镜像拉去不下来&#xff0c;遇到如下问题&#xff1a; [ERROR] error pulling image configuration: Get " https://production.cloudflare.docker.com/registry-v…

[Spring Boot]Netty-UDP客户端

文章目录 简述Netty-UDP集成pom引入ClientHandler调用 消息发送与接收在线UDP服务系统调用 简述 最近在一些场景中需要使用UDP客户端进行&#xff0c;所以开始集成新的东西。本文集成了一个基于netty的SpringBoot的简单的应用场景。 Netty-UDP集成 pom引入 <!-- netty --…

Adaboost集成学习 | Adaboost集成学习特征重要性分析(Python)

目录 效果一览基本介绍模型设计程序设计参考资料效果一览 基本介绍 Adaboost集成学习特征重要性分析(Python)Adaboost(自适应增强)是一种常用的集成学习方法,用于提高机器学习算法的准确性。它通过组合多个弱分类器来构建一个强分类器。在Adaboost中,每个弱分类器都被赋予…

电子电气架构——由NRC优先级引起的反思

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

【论文精读】分类扩散模型:重振密度比估计(Revitalizing Density Ratio Estimation)

文章目录 一、文章概览&#xff08;一&#xff09;问题的提出&#xff08;二&#xff09;文章工作 二、理论背景&#xff08;一&#xff09;密度比估计DRE&#xff08;二&#xff09;去噪扩散模型 三、方法&#xff08;一&#xff09;推导分类和去噪之间的关系&#xff08;二&a…