能理解你的意图的自动化采集工具——AI和爬虫相结合

news2025/1/15 8:42:27

⭐️我叫忆_恒心,一名喜欢书写博客的研究生👨‍🎓。
如果觉得本文能帮到您,麻烦点个赞👍呗!

近期会不断在专栏里进行更新讲解博客~~~
有什么问题的小伙伴 欢迎留言提问欧,喜欢的小伙伴给个三连支持一下呗。👍⭐️❤️
📂Qt5.9专栏定期更新Qt的一些项目Demo
📂项目与比赛专栏定期更新比赛的一些心得面试项目常被问到的知识点。
欢迎评论 💬点赞👍🏻 收藏 ⭐️加关注+
✍🏻文末可以进行资料和源码获取欧😄

前言

当我们需要收集一些数据的时候,自动化数据采集工具总是可以帮到我们,但是传统的自动化数据采集工具,存在以下不足:

  1. 工具的通用程度低:需要我们手动分析每个网站的特点;
  2. 保存的数据格式也比较单一
  3. 操作麻烦

当AI的阅读理解能力遇到了自动化采集工具的时候,将会产生怎么样的魔法呢?

能够理解你的意图并自动执行复杂的网络数据抓取任务,ScrapeGraphAI 就是这样一个工具,它利用最新的人工智能技术,让数据提取变得前所未有地简单。

工具的优点

  • 简单易用:只需输入 API 密钥,您就可以在几秒钟内抓取数千个网页!
  • 开发便捷:你只需要实现几行代码,工作就完成了。
  • 专注业务:有了这个库,您可以节省数小时的时间,因为您只需要设置项目,人工智能就会为您完成一切。

一、介绍

ScrapeGraphAI是一个网络爬虫 Python 库,使用大型语言模型和直接图逻辑为网站和本地文档(XML,HTML,JSON 等)创建爬取管道。

只需告诉库您想提取哪些信息,它将为您完成!

scrapegraphai有三种主要的爬取管道可用于从网站(或本地文件)提取信息:

  • SmartScraperGraph: 单页爬虫,只需用户提示和输入源;
  • SearchGraph: 多页爬虫,从搜索引擎的前 n 个搜索结果中提取信息;
  • SpeechGraph: 单页爬虫,从网站提取信息并生成音频文件。
  • SmartScraperMultiGraph: 多页爬虫,给定一个提示 可以通过 API 使用不同的 LLM,如 OpenAIGroqAzureGemini,或者使用 Ollama 的本地模型。

官方提供了非常详细的文档:官方文档

二、准备工作

2.1 安装ollama

点击前往网站 https://ollama.com/ ,下载ollama软件,目前该软件支持支持win、Mac、linux

2.2 下载LLM

ollama软件目前支持多种大模型, 如阿里的(qwen、qwen2)、meta的(llama3),

以llama3为例,根据自己电脑显存性能, 选择适宜的版本。如果不知道选什么,那就试着安装,不合适不能用再删除即可

打开电脑终端命令行cmd, 网络是连网状态,执行模型下载(安装)命令

强烈建议,更改默认路径


新建变量
OLLAMA_MODELS

D:\OllamaCache
添加了环境变量后,记得重启计算机,使其生效

ollama pull llama3
ollama pull qwen2
ollama pull nomic-embed-text

等待 llama3、 nomic-embed-text 下载完成。
在这里插入图片描述

2.3 安装python包

在python中调用ollama服务,需要ollama包。

打开电脑命令行cmd(mac是terminal), 网络是连网状态,执行安装命令

pip3 install ollama

建议使用anaconda环境来管理这些包,因为默认的base环境可能会出现python版本不兼容的问题

# 创建名为 ollama 的虚拟环境,并指定 Python 3.10
conda create --name ollama python=3.10
# 激活虚拟环境
conda activate ollama

2.4 启动ollama服务

在Python中调用本地ollama服务,需要先启动本地ollama服务, 打开电脑命令行cmd(mac是terminal), 执行

ollama serve

Run

cmd(mac是terminal)看到如上的信息,说明本地ollama服务已开启。

2.5 安装scrapegraphai及playwright

电脑命令行cmd(mac是terminal), 网络是连网状态,执行安装命令

pip install scrapegraphai

之后继续命令行cmd(mac是terminal)执行

playwright install

等待安装完成后,进行实验

三、实验

注意端口冲突,尽量不要使用8080

3.1 案例1

以我的博客 ydlin.blog.csdn.net 为例,假设我想获取标题、日期、文章链接,

代码如下:

from scrapegraphai.graphs import SmartScraperGraph


graph_config = {
    "llm": {
        "model": "ollama/llama3",
        "temperature": 0,
        "format": "json",  # Ollama 需要显式指定格式
        "base_url": "http://localhost:11434",  # 设置 Ollama URL
    },
    "embeddings": {
        "model": "ollama/nomic-embed-text",
        "base_url": "http://localhost:11434",  # 设置 Ollama URL
    },
    "verbose": True,
}

smart_scraper_graph = SmartScraperGraph(
    prompt="返回该网站所有文章的标题、日期、文章链接",
    # 也接受已下载的 HTML 代码的字符串
    #source=requests.get("https://ydlin.blog.csdn.net/").text,
    source="https://ydlin.blog.csdn.net/",
    config=graph_config
)

result = smart_scraper_graph.run()
print(result)

Run

--- Executing Fetch Node ---
--- Executing Parse Node ---
--- Executing RAG Node ---
--- (updated chunks metadata) ---
--- (tokens compressed and vector stored) ---
--- Executing GenerateAnswer Node ---
Processing chunks: 100%|█████████████████████████| 1/1 [00:00<00:00, 825.81it/s]

...

3.2 案例2

采集豆瓣读书 https://book.douban.com/top250 中的 名字、作者名、评分、书籍链接 等信息。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

from scrapegraphai.graphs import SmartScraperGraph


graph_config = {
    "llm": {
        "model": "ollama/llama3",
        "temperature": 0,
        "format": "json",  # Ollama 需要显式指定格式
        "base_url": "http://localhost:11434",  # 设置 Ollama URL
    },
    "embeddings": {
        "model": "ollama/nomic-embed-text",
        "base_url": "http://localhost:11434",  # 设置 Ollama URL
    },
    "verbose": True,
}


smart_scraper_graph2 = SmartScraperGraph(
    prompt="返回该页面所有书的名字、作者名、评分、书籍链接",
    source="https://book.douban.com/top250",
    config=graph_config
)

result2 = smart_scraper_graph2.run()
print(result2)

Run

--- Executing Fetch Node ---
--- Executing Parse Node ---
--- Executing RAG Node ---
--- (updated chunks metadata) ---
--- (tokens compressed and vector stored) ---
--- Executing GenerateAnswer Node ---
Processing chunks: 100%|████████████████████████| 1/1 [00:00<00:00, 1474.79it/s]
{}

采集失败,返回空。

将大模型llama3改为qwen2

from scrapegraphai.graphs import SmartScraperGraph


graph_config2 = {
    "llm": {
        "model": "ollama/qwen2",
        "temperature": 0,
        "format": "json",  # Ollama 需要显式指定格式
        "base_url": "http://localhost:11434",  # 设置 Ollama URL
    },
    "embeddings": {
        "model": "ollama/nomic-embed-text",
        "base_url": "http://localhost:11434",  # 设置 Ollama URL
    },
    "verbose": True,
}


smart_scraper_graph3 = SmartScraperGraph(
    prompt="返回该页面所有书的名字、作者名、评分、书籍链接",
    source="https://book.douban.com/top250",
    config=graph_config2
)

result3 = smart_scraper_graph3.run()
print(result3)

Run

--- Executing Fetch Node ---
--- Executing Parse Node ---
--- Executing RAG Node ---
--- (updated chunks metadata) ---
--- (tokens compressed and vector stored) ---
--- Executing GenerateAnswer Node ---
Processing chunks: 100%|████████████████████████| 1/1 [00:00<00:00, 1102.60it/s]
{'urls': ['https://book.douban.com/subject/10554308/', 'https://book.douban.com/subject/1084336/', 'https://book.douban.com/subject/1084336/', 'https://book.douban.com/subject/1046209/', 'https://book.douban.com/subject/1046209/', 'https://book.douban.com/subject/1255625/', 'https://book.douban.com/subject/1255625/', 'https://book.douban.com/subject/1060068/', 'https://book.douban.com/subject/1060068/', 'https://book.douban.com/subject/1449351/', 'https://book.douban.com/subject/1449351/', 'https://book.douban.com/subject/20424526/', 'https://book.douban.com/subject/20424526/', 'https://book.douban.com/subject/29799269/', 'https://book.douban.com/subject/1034062/', 'https://book.douban.com/subject/1229240/', 'https://book.douban.com/subject/1237549/', 'https://book.douban.com/subject/1078958/', 'https://book.douban.com/subject/1076932/', 'https://book.douban.com/subject/1075440/', 'https://book.douban.com/subject/1076932/', 'https://book.douban.com/subject/1078958/', 'https://book.douban.com/subject/1076932/', 'https://book.douban.com/subject/1078958/', 'https://book.douban.com/subject/1076932/', 'https://book.douban.com/subject/1078958/', 'https://book.douban.com/subject/1076932/'], 'images': ['https://img1.doubanio.com/view/subject/s/public/s1078958.jpg', 'https://img1.doubanio.com/view/subject/s/public/s1076932.jpg', 'https://img1.doubanio.com/view/subject/s/public/s1447349.jpg']}

采集到一些信息,但没有书名、作者等信息。

3.3 使用远程服务器

如果机子的性能比较差,直接利用ChatGPT的key。

仓库中的.md文件给出调用样例,输出的结果为音频文件。
然而实际上,往往在进行数据采集的时候,我们将采集的结果保存成文本格式就可了。

import os
from dotenv import load_dotenv
from scrapegraphai.graphs import SmartScraperGraph
from scrapegraphai.utils import prettify_exec_info

load_dotenv()

def main():
    #openai_key = os.getenv("x")

    graph_config = {
       "llm": {
          "api_key": "OPENAI_API_KEY",
          "model": "gpt-3.5-turbo",
       },
    }

    # ************************************************
    # Create the SmartScraperGraph instance and run it
    # ************************************************

    smart_scraper_graph = SmartScraperGraph(
       prompt="List me all the projects with their description.",
       # also accepts a string with the already downloaded HTML code
       source="https://perinim.github.io/projects/",
       config=graph_config
    )

    result = smart_scraper_graph.run()
    print(result)

if __name__ == "__main__":
    main()

在环境都正常配上的时候,出现You exceeded your current quota 需要检查一下OPENAI_API_KEY是否有调用余额。

下面也附上仓库给出的示例,将爬取的结果保存成音频文件。

from scrapegraphai.graphs import SpeechGraph

graph_config = {
    "llm": {
        "api_key": "OPENAI_API_KEY",
        "model": "gpt-3.5-turbo",
    },
    "tts_model": {
        "api_key": "OPENAI_API_KEY",
        "model": "tts-1",
        "voice": "alloy"
    },
    "output_path": "audio_summary.mp3",
}

# ************************************************
# Create the SpeechGraph instance and run it
# ************************************************

speech_graph = SpeechGraph(
    prompt="Make a detailed audio summary of the projects.",
    source="https://perinim.github.io/projects/",
    config=graph_config,
)

result = speech_graph.run()
print(result)

注意:

代码需要在 .py 中运行,在 .ipynb 中运行会报错。

四、讨论与总结

ScrapeGraphAI 能够理解你的意图并自动执行复杂的网络数据抓取任务。虽然,现在模型还存在着一些不够完善的地方(采集的速度比较慢,底层使用playwright访问速度较慢)
但是目前AI与自动化爬取相结合的一个大模型爬虫,真的可以称得上是一款可以理解用户意义的网络爬虫。

往期优秀文章推荐:

  1. 研究生入门工具——让你事半功倍的SCI、EI论文写作神器
  2. 磕磕绊绊的双非硕秋招之路小结
  3. 研一学习笔记-小白NLP入门学习笔记
  4. C++ LinuxWebServer 2万7千字的面经长文(上)
  5. C++Qt5.9学习笔记-事件1.5W字总结
    在这里插入图片描述

资料、源码获取以及更多粉丝福利,可以关注下方进行获取欧
推荐

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1853804.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计网:网络应用层【Email应用/SMTP协议】

Email应用与SMTP协议 Email应用层的构成 客户端服务器协议 用户代理 用于读写邮件消息&#xff1b;与服务器交互&#xff0c;收发邮件消息 常见的客户端&#xff1a;Outlook&#xff0c;Foxmail&#xff08;这两个是需要下载的客户端&#xff09;&#xff0c;Web客户端&…

浏览器插件利器-allWebPluginV2.0.0.14-bata版发布

allWebPlugin简介 allWebPlugin中间件是一款为用户提供安全、可靠、便捷的浏览器插件服务的中间件产品&#xff0c;致力于将浏览器插件重新应用到所有浏览器。它将现有ActiveX插件直接嵌入浏览器&#xff0c;实现插件加载、界面显示、接口调用、事件回调等。支持谷歌、火狐等浏…

【数据建模】微分方程与动力系统

文章目录 微分方程与动力系统1. 微分方程的理论基础1.1 函数、导数与微分1.2 一阶线性微分方程的解1.3 二阶常系数线性微分方程的解 2. 使用python求解微分方程2.1 求解微分2.2 求解定积分2.2.1 quad函数求解2.2.2 梯型法则求解 3. 使用Scipy和Sympy解微分方程3.1 使用sympy求解…

4. DSL入门_01

1. 常见的DSL (1) 查询所有: 查询出所有数据&#xff0c;一般测试的时候使用&#xff0c;例如&#xff1a; match_all .但是受分页限制&#xff0c;一般返回10条数据 (2) 全文检索(full text)查询&#xff1a;利用分词器对用户输入内容分词&#xff0c;然后去倒排索引中匹配&a…

三个 insert 导致的死锁问题

锁种类 插入意向锁&#xff08;insert intention lock&#xff09;对已有数据行的修改与删除&#xff0c;必须加强互斥锁 X 锁&#xff0c;那对于数据的插入&#xff0c;是否还需要加这么强的锁&#xff0c;来实施互斥呢&#xff1f;插入意向锁&#xff0c;孕育而生。插入意向…

任务5.2 掌握DStream基础操作

实战&#xff1a;DStream基础操作 了解DStream编程模型&#xff1a;DStream是Spark Streaming中对实时数据流的抽象&#xff0c;可以看作一系列持续的RDD。DStream可以通过外部数据源获取或通过现有DStream的高级操作获得。 操作本质&#xff1a;DStream上的操作最终会转化为对…

OneNote for Windows 10 下载

OneNote for Windows 10 安装 1.在浏览器中输入地址&#xff1a;https://apps.microsoft.com/detail/9wzdncrfhvjl?hlzh-cn&glUS2OneNote for Windows 10 - 在 Windows 上免费下载并安装 |Microsoft StoreOneNote 是用于在设备上捕获和组织你的一切内容的数字笔记本。快速…

对日期的处理

对日期的处理 对编码进行统一&#xff0c;在脚本最开始&#xff1a; # -*- coding: utf-8 -*-这里涉及到两个操作&#xff0c;一个是将数据进行标准化&#xff0c;比如有些日期是2024/05/06这并不符合日期的标准格式&#xff0c;需要转换成这样的2024-05-06 def tran_std(st…

八爪鱼现金流-030,升级日志

八爪鱼现金流 八爪鱼 2024年4月4日09:27:02 v-0.0.1 资产包、负债包&#xff0c;功能优化 2024年4月15日09:27:26 v-0.0.2 增加公告模块 2024年4月18日12:14:32 v-0.0.3 市场查询优化。创建人脱敏处理。增加市场风云菜单。 2024年4月18日15:57:10 v-0.0.4 对于无截止日…

[MYSQL] 数据库基础

1.什么是数据库 从数据库的名字可以看出,它是用来操作(增删查改....)数据的,事实上也的确如此,通过数据库,我们可以更方便.更高效的来操作.管理数据 以文件形式存储数据的缺点 文件的安全问题文件不利于数据的查询和删除文件不利于存储海量数据操作文件并不方便 为了解决上述问…

【Vue-Vben-Admin】1、初次运行和介绍

【Vue-Vben-Admin】1、初次运行和介绍 Vben-Admin 初次运行和介绍 小小的介绍规定版本文件树安装依赖运行项目 小小的介绍 一款 Vue3 Typescript4 Vite2 后台管理项目&#xff0c;功能挺多的&#xff0c;还有组件库 规定版本 此个人文档规定版本为 2.8.0&#xff0c;可能版本…

消息队列MQ相关面试题

消息队列MQ相关面试题 1 RabbitMQ 1.1 你们项目中哪里用到了RabbitMQ ? 难易程度&#xff1a;☆☆☆ 出现频率&#xff1a;☆☆☆☆ 我们项目中很多地方都使用了RabbitMQ , RabbitMQ 是我们项目中服务通信的主要方式之一 , 我们项目中服务通信主要有二种方式实现 : 通过Fei…

STM32 温湿度采集与OLED显示

目录 一、I2C总线通信协议 1、I2C介绍 2、软件I2C和硬件I2C &#xff08;1&#xff09;硬件I2C &#xff08;2&#xff09;软件I2C 差异 二、AHT20温湿度传感器 接口原理介绍 1. 温度测量原理 2. 湿度测量原理 实物引脚 传感器性能 电气特性 三、任务实现 具…

【python】美妆类商品跨境电商数据分析(源码+课程论文+数据集)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

动手学深度学习(Pytorch版)代码实践 -计算机视觉-37微调

37微调 import os import torch import torchvision from torch import nn import liliPytorch as lp import matplotlib.pyplot as plt from d2l import torch as d2l# 获取数据集 d2l.DATA_HUB[hotdog] (d2l.DATA_URL hotdog.zip,fba480ffa8aa7e0febbb511d181409f899b9baa5…

setInterval 定时任务执行时间不准验证

一般在处理定时任务的时候都使用setInterval间隔定时调用任务。 setInterval(() > {console.log("interval"); }, 2 * 1000);我们定义的是两秒执行一次&#xff0c;但是浏览器实际执行的间隔时间只多不少。这是由于浏览器执行 JS 是单线程模式&#xff0c;使用se…

二进制炸弹的fp是什么?

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…

Go日常分享 - error类型是指针类型吗?

背景 这个问题的产生来源于小泉在开发rpc接口时返回error遇到的问题&#xff0c;开发时想在defer里对err进行最终的统一处理赋值&#xff0c;发现外层接收一直都未生效。问题可以简化为成下面的小demo。 func returnError() error {var err errordefer func() {//err errors…

PMBOK® 第六版 管理项目知识

目录 读后感—PMBOK第六版 目录 在前面的文章中&#xff0c;输入环节都可以看见有事业环境因素、组织过程资产&#xff1b;工具与技术都有专家判断。都是说明知识的重要性。 虽然项目具有其独特的、唯一性&#xff0c;但项目相关的经验却能如同家族传承般&#xff0c;被持续地…

【Python】已解决:安装python-Levenshtein包时遇到的subprocess-exited-with-error问题

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例及解决方案五、注意事项 已解决&#xff1a;安装python-Levenshtein包时遇到的subprocess-exited-with-error问题 一、分析问题背景 在安装python-Levenshtein这个Python包时&#xff0c;有时会…