什么是 AI 智能体?
「AI 智能体」这个术语并没有真正被定义,对智能体究竟是什么也存在很多的争议。
AI 智能体可以定义为「一个被赋予行动能力的 LLM(通常在 RAG 环境中进行函数调用),以便在环境中对如何执行任务做出高层次的决策。」
当前,构建 AI 智能体主要有以下两种架构方法:
**单一智能体:**一个大型模型处理整个任务,并基于其全面的上下文理解做出所有决策和行动。这种方法利用了大型模型的涌现能力,避免了将任务分解所带来的信息丢失。
**多智能体系统:**将任务分解为子任务,每个子任务由一个更小、更专业的智能体处理。与尝试使用一个难以控制和测试的大型通用智能体相比,人们可以使用许多更小的智能体来为特定子任务选择正确的策略。由于上下文窗口长度的限制或不同技能组合的需要等实际约束,这种方法有时是必要的。
理论上,具有无限上下文长度和完美注意力的单一智能体是理想的。由于上下文较短,在特定问题上,多智能体系统总是比单一系统效果差。
实践中的挑战
在见证了许多 AI 智能体的尝试之后,作者认为它们目前仍为时过早、成本过高、速度过慢且不够可靠。许多 AI 智能体初创公司似乎在等待一个模型突破,以开启智能体产品化的竞赛。
AI 智能体在实际运用中的表现并不够成熟,这体现在输出不精确、性能差强人意、成本较高、赔偿风险、无法获得用户信任等问题:
**可靠性:**众所周知,LLMs 容易产生幻觉和不一致性。将多个 AI 步骤连接起来会加剧这些问题,尤其是对于需要精确输出的任务。
性能和成本:GPT-4、Gemini-1.5 和 Claude Opus 在使用工具 / 函数调用方面表现不错,但它们仍然较慢且成本高,特别是如果需要进行循环和自动重试时。
**法律问题:**公司可能需要对其智能体的错误负责。最近的一个例子是,加拿大航空被命令向一位被航空公司聊天机器人误导的客户赔偿。
用户信任:AI 智能体的「黑箱」性质以及类似示例使得用户难以理解和信任其输出。在涉及支付或个人信息的敏感任务中(如支付账单、购物等),赢得用户信任将会很困难。
现实世界中的尝试
目前,以下几家初创公司正在涉足 AI 智能体领域,但大多数仍处于实验阶段或仅限邀请使用:
adept.ai - 融资 3.5 亿美元,但访问权限仍然非常有限。
MultiOn - 融资情况未知,他们的 API 优先方法看起来很有前景。
HypeWrite - 融资 280 万美元,起初是一个 AI 写作助手,后来扩展到智能体领域。
minion.ai - 最初引起了一些关注,但现在已经沉寂,仅有等候名单。
它们中似乎只有 MultiOn 在追求「给出指令并观察其执行」的方法,这与 AI 智能体的承诺更为一致。
其他所有公司都在走记录和重放的 RPA(record-and-replay)路线,这在现阶段可能是为保证可靠性所必需的。
同时,一些大公司也在将 AI 功能带到桌面和浏览器,并且看起来将会在系统层面上获得本地的 AI 集成。
OpenAI 宣布了他们的 Mac 桌面应用程序,可以与操作系统屏幕互动。
在 Google I/O 大会上,Google 演示了 Gemini 自动处理购物退货。
这些技术演示令人印象深刻,人们可以拭目以待这些智能体功能在公开发布并在真实场景中测试时的表现,而不是仅限于精心挑选的演示案例。
未来的工业智能体
智能体是工业大模型降本增效的关键
1.在工艺全流程持续探索如何用大模型,用新的AI技术帮助工业企业进行全面进一步转型,大模型我们在探索帮助企业实现工艺、流程、成本、效率各个方面的优化。
2.建工业智能体平台,在企业、工艺场景都是以智能体的形式进行研发,在办公、设计、制造、服务领域分别开发大量智能体,通过智能体开发和管理,连通企业的工业设备、工业软化、企业软化、数据库,全面改变企业员工和传统数字化系统之间交互的方式。
办公场景,可以通过大模型机器人直接问我今年还剩几天年假,背后智能体自动调动相应的企业软件把信息提取出来反馈给员工,不用到各个独立系统检索数据;在研发和设计场景,通过各种智能体大幅提高我们的工作效率
3.工业大模型在架构
-最下面一层过去若干年基于工业互联网平台打造数据底座,实现了工业数据汇聚的作用,同时在工业互联网平台上现在正在建设工业数据空间,实现企业和企业之间,跨行业之间可信联通,进一步解决在工业领域高质量语料匮乏的问题;
-中间一层**工业大模型层,**大模型在工业领域的落地会遇到很多困难,比如幻觉和精确的问题,在工业领域我们绝大多数的场景都是需要100%的精确度,最开始的思路大小模型要结合,真正需要高精度做决策的场景仍需努力。
在工业大模型本体建设上,在工业领域比如CAD图纸,KLC代码,能够让大模型对工业语言进行理解。由于大模型应用到企业里,必须要解决企业在应用大模型的成本和效率问题,如何构建了一条大模型自学习或者大模型微条自动化的流水线,这是生产智能化需要攻克的问题
-**再往上是场景层,**把一家企业解构,分为四个大流程,分别是面向客户需求交互、研发设计、生产制造、精准服务,每个环节不管内部还是外部都有比较多的场景实践探索。
未来:在AI驱动下,工厂会变成工业智能体。未来在工厂一定是大模型搭配很多工具、专家模型一起协同进一步加速制造业向智能化的转型。