Day13-Spark SQL的学习

news2025/1/11 14:51:40

Spark SQL的学习

一.Spark SQL基础
二.Spark SQL整合hive


文章目录

  • Spark SQL的学习
  • 一、Spark SQL基础
      • Spark SQL介绍
      • DataFrame和DataSet
      • Spark SQL的基本使用
          • Spark SQL基本使用案例
      • Spark SQL函数
        • 内置函数
        • 自定义函数
        • 窗口(开窗)函数
  • 二、Spark SQL整合Hive
      • Spark SQL整合Hive的步骤
      • Spark SQL操作Hive的几种方式


一、Spark SQL基础

Spark SQL介绍

​ Spark SQL是一个用于结构化数据处理的Spark组件。所谓结构化数据,是指具有Schema信息的数据,例如JSON、Parquet、Avro、CSV格式的数据。与基础的Spark RDD API不同,Spark SQL提供了对结构化数据的查询和计算接口。

Spark SQL的主要特点:

  • 将SQL查询与Spark应用程序无缝组合

​ Spark SQL允许使用SQL或熟悉的API在Spark程序中查询结构化数据。与Hive不同的是,Hive是将SQL翻译成MapReduce作业,底层是基于MapReduce的;而Spark SQL底层使用的是Spark RDD。

  • 可以连接到多种数据源

​ Spark SQL提供了访问各种数据源的通用方法,数据源包括Hive、Avro、Parquet、ORC、JSON、JDBC等。

  • 在现有的数据仓库上运行SQL或HiveQL查询

​ Spark SQL支持HiveQL语法以及Hive SerDes和UDF (用户自定义函数) ,允许访问现有的Hive仓库。

DataFrame和DataSet

  • DataFrame的结构

​ DataFrame是Spark SQL提供的一个编程抽象,与RDD类似,也是一个分布式的数据集合。但与RDD不同的是,DataFrame的数据都被组织到有名字的列中,就像关系型数据库中的表一样。

​ DataFrame在RDD的基础上添加了数据描述信息(Schema,即元信息) ,因此看起来更像是一张数据库表。例如,在一个RDD中有3行数据,将该RDD转成DataFrame后,其中的数据可能如图所示:

在这里插入图片描述

  • DataSet的结构

Dataset是一个分布式数据集,是Spark 1.6中添加的一个新的API。相比于RDD, Dataset提供了强类型支持,在RDD的每行数据加了类型约束。
在这里插入图片描述
​ 在Spark中,一个DataFrame代表的是一个元素类型为Row的Dataset,即DataFrame只是Dataset[Row]的一个类型别名。

Spark SQL的基本使用

​ Spark Shell启动时除了默认创建一个名为sc的SparkContext的实例外,还创建了一个名为spark的SparkSession实例,该spark变量可以在Spark Shell中直接使用。

​ SparkSession只是在SparkContext基础上的封装,应用程序的入口仍然是SparkContext。SparkSession允许用户通过它调用DataFrame和Dataset相关API来编写Spark程序,支持从不同的数据源加载数据,并把数据转换成DataFrame,然后使用SQL语句来操作DataFrame数据。

Spark SQL基本使用案例

在HDFS中有一个文件/input/person.txt,文件内容如下:在这里插入图片描述
现需要使用Spark SQL将该文件中的数据按照年龄降序排列,步骤如下:

进入spark-shell环境

  • 加载数据为Dataset
val d1 = spark.read.textFile("hdfs://192.168.121.131:9000/input/person.txt")

d1.show() # 查看d1中的数据内容

​ 从上述代码的结果可以看出,Dataset将文件中的每一行看作一个元素,并且所有元素组成了一列,列名默认为value。

  • 给Dataset添加元数据信息

​ 定义一个样例类Person,用于存放数据描述信息,代码如下:

case class Person(id:Int,name:String,age:Int)

​ 注:Scala有一种特殊的类叫做样例类(case class)。默认情况下,样例类一般用于不可变对象(样例类构造参数默认声明为val)。

​ 调用Dataset的map()算子将每一个元素拆分并存入Person类中,代码如下:

val personDataset = d1.map(line=>{
          val fields = line.split(",")
          val id = fields(0).toInt
          val name = fields(1)
          val age = fields(2).toInt
          Person(id,name,age)
          })
          
personDataset.show() # 查看personDataset中的数据内容       

可以看到,personDataset中的数据类似于一张关系型数据库的表。

  • 将Dataset转为DataFrame

​ Spark SQL查询的是DataFrame中的数据,因此需要将存有元数据信息的Dataset转为DataFrame。

​ 调用Dataset的toDF()方法,将存有元数据的Dataset转为DataFrame,代码如下:

val pdf = personDataset.toDF()
  • 执行SQL查询

​ 在DataFrame上创建一个临时视图v_person,并使用SparkSession对象执行SQL查询,代码如下:

pdf.createTempView("v_person")
val result = spark.sql("select * from v_person order by age desc")
result.show()

在这里插入图片描述

Spark SQL函数

内置函数

​ Spark SQL内置了大量的函数,位于API org.apache.spark.sql.functions

中。其中大部分函数与Hive中的相同。

​ 使用内置函数有两种方式:一种是通过编程的方式使用;另一种是在SQL

语句中使用。

  • 以编程的方式使用lower()函数将用户姓名转为小写/大写,代码如下:
df.select(lower(col("name")).as("greet")).show()
df.select(upper(col("name")).as("greet")).show()

​ 上述代码中,df指的是DataFrame对象,使用select()方法传入需要查询的列,使用as()方法指定列的别名。代码col(“name”)指定要查询的列,也可以使用$"name"代替,代码如下:

df.select(lower($"name").as("greet")).show()
  • 以SQL语句的方式使用lower()函数,代码如下:
df.createTempView("temp")
spark.sql("select upper(name) as greet from temp").show()

​ 除了可以使用select()方法查询指定的列外,还可以直接使用filter()、groupBy()等方法对DataFrame数据进行过滤和分组,例如以下代码:

df.printSchema()  # 打印Schema信息
df.select("name").show()  # 查询name列
# 查询name列和age列,其中将age列的值增加1
df.select($"name",$"age"+1).show()
df.filter($"age">25).show() # 查询age>25的所有数据
# 根据age进行分组,并求每一组的数量
df.groupBy("age").count().show() 
自定义函数

​ 当Spark SQL提供的内置函数不能满足查询需求时,用户可以根据需求编写自定义函数(User Defined Functions, UDF),然后在Spark SQL中调用。

​ 例如有这样一个需求:为了保护用户的隐私,当查询数据的时候,需要将用户手机号的中间4位数字用星号()代替,比如手机号180***2688。这时就可以编写一个自定义函数来实现这个需求,实现代码如下:

package spark.demo.sql

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}

/**
 * 用户自定义函数,隐藏手机号中间4位
 */
object SparkSQLUDF {
  def main(args: Array[String]): Unit = {
    //创建或得到SparkSession
    val spark = SparkSession.builder()
      .appName("SparkSQLUDF")
      .master("local[*]")
      .getOrCreate()

    //第一步:创建测试数据(或直接从文件中读取)
    //模拟数据
    val arr=Array("18001292080","13578698076","13890890876")
    //将数组数据转为RDD
    val rdd: RDD[String] = spark.sparkContext.parallelize(arr)
    //将RDD[String]转为RDD[Row]
    val rowRDD: RDD[Row] = rdd.map(line=>Row(line))
    //定义数据的schema
    val schema=StructType(
      List{
        StructField("phone",StringType,true)
      }
    )
    //将RDD[Row]转为DataFrame
    val df = spark.createDataFrame(rowRDD, schema)

    //第二步:创建自定义函数(phoneHide)
    val phoneUDF=(phone:String)=>{
      var result = "手机号码错误!"
      if (phone != null && (phone.length==11)) {
        val sb = new StringBuffer
        sb.append(phone.substring(0, 3))
        sb.append("****")
        sb.append(phone.substring(7))
        result = sb.toString
      }
      result
    }
    //注册函数(第一个参数为函数名称,第二个参数为自定义的函数)
    spark.udf.register("phoneHide",phoneUDF)

    //第三步:调用自定义函数
    df.createTempView("t_phone")		//创建临时视图
    spark.sql("select phoneHide(phone) as phone from t_phone").show()
    // +-----------+
    // |      phone|
    // +-----------+
    // |180****2080|
    // |135****8076|
    // |138****0876|
    // +-----------+
  }
}
窗口(开窗)函数

​ 开窗函数是为了既显示聚合前的数据,又显示聚合后的数据,即在每一行的最后一列添加聚合函数的结果。开窗口函数有以下功能:

  • 同时具有分组和排序的功能
  • 不减少原表的行数
  • 开窗函数语法:

聚合类型开窗函数

sum()/count()/avg()/max()/min() OVER([PARTITION BY XXX] [ORDER BY XXX [DESC]]) 

排序类型开窗函数

ROW_NUMBER() OVER([PARTITION BY XXX] [ORDER BY XXX [DESC]])
  • 以row_number()开窗函数为例:

​ 开窗函数row_number()是Spark SQL中常用的一个窗口函数,使用该函数可以在查询结果中对每个分组的数据,按照其排列的顺序添加一列行号(从1开始),根据行号可以方便地对每一组数据取前N行(分组取TopN)。row_number()函数的使用格式如下:

row_number() over (partition by 列名 order by 列名 desc) 行号列别名

上述格式说明如下:

partition by:按照某一列进行分组;

order by:分组后按照某一列进行组内排序;

desc:降序,默认升序。

例如,统计每一个产品类别的销售额前3名,代码如下:

package spark.demo.sql

import org.apache.spark.sql.types._
import org.apache.spark.sql.{Row, SparkSession}

/**
 * 统计每一个产品类别的销售额前3名(相当于分组求TOPN)
 */
object SparkSQLWindowFunctionDemo {
  def main(args: Array[String]): Unit = {
    //创建或得到SparkSession
    val spark = SparkSession.builder()
      .appName("SparkSQLWindowFunctionDemo")
      .master("local[*]")
      .getOrCreate()

    //第一步:创建测试数据(字段:日期、产品类别、销售额)
    val arr=Array(
      "2019-06-01,A,500",
      "2019-06-01,B,600",
      "2019-06-01,C,550",
      "2019-06-02,A,700",
      "2019-06-02,B,800",
      "2019-06-02,C,880",
      "2019-06-03,A,790",
      "2019-06-03,B,700",
      "2019-06-03,C,980",
      "2019-06-04,A,920",
      "2019-06-04,B,990",
      "2019-06-04,C,680"
    )
    //转为RDD[Row]
    val rowRDD=spark.sparkContext
      .makeRDD(arr)
      .map(line=>Row(
        line.split(",")(0),
        line.split(",")(1),
        line.split(",")(2).toInt
      ))
    //构建DataFrame元数据
    val structType=StructType(Array(
      StructField("date",StringType,true),
      StructField("type",StringType,true),
      StructField("money",IntegerType,true)
    ))
    //将RDD[Row]转为DataFrame
    val df=spark.createDataFrame(rowRDD,structType)

    //第二步:使用开窗函数取每一个类别的金额前3名
    df.createTempView("t_sales")		//创建临时视图
    //执行SQL查询
    spark.sql(
      "select date,type,money,rank from " +
        "(select date,type,money," +
        "row_number() over (partition by type order by money desc) rank "+
        "from t_sales) t " +
        "where t.rank<=3"
    ).show()
  }
}

二、Spark SQL整合Hive

Hive是一个基于Hadoop的数据仓库架构,使用SQL语句读、写和管理大型分布式数据集。Hive可以将SQL语句转化为MapReduce(或Apache Spark、Apache Tez)任务执行,大大降低了Hadoop的使用门槛,减少了开发MapReduce程序的时间成本。可以将Hive理解为一个客户端工具,它提供了一种类SQL查询语言,称为HiveQL。这使得Hive十分适合数据仓库的统计分析,能够轻松使用HiveQL开启数据仓库任务,如提取/转换/加载(ETL)、分析报告和数据分析。Hive不仅可以分析HDFS文件系统中的数据,也可以分析其他存储系统(例如HBase)中的数据。

​ Spark SQL与Hive整合后,可以在Spark SQL中使用HiveQL轻松操作数据仓库。与Hive不同的是,Hive的执行引擎为MapReduce,而Spark SQL的执行引擎为Spark RDD。

Spark SQL整合Hive的步骤

Spark SQL与Hive的整合分为三个步骤:

(1)将 H I V E H O M E / c o n f 中的 h i v e − s i t e . x m l 文件复制到 HIVE_HOME/conf中的hive-site.xml文件复制到 HIVEHOME/conf中的hivesite.xml文件复制到SPARK_HOME/conf中,并添加“hive.metastore.schema.verification=false”和“datanucleus.schema.autoCreateAll=true”等属性,详细配置内容如下(可根据自己集群的情况修改相应的值):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!--
   Licensed to the Apache Software Foundation (ASF) under one or more
   contributor license agreements.  See the NOTICE file distributed with
   this work for additional information regarding copyright ownership.
   The ASF licenses this file to You under the Apache License, Version 2.0
   (the "License"); you may not use this file except in compliance with
   the License.  You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
-->
<configuration>
    <!-- 数据库 start -->
    <property>
      <name>javax.jdo.option.ConnectionURL</name>
      <value>jdbc:mysql://localhost:3306/spark_hive_meta?createDatabaseIfNotExist=true&amp;useSSL=false</value>
      <description>mysql连接</description>
    </property>

    <property>
      <name>javax.jdo.option.ConnectionDriverName</name>
      <value>com.mysql.jdbc.Driver</value>
      <description>mysql驱动</description>
    </property>

    <property>
      <name>javax.jdo.option.ConnectionUserName</name>
      <value>root</value>
      <description>数据库使用用户名</description>
    </property>

    <property>
      <name>javax.jdo.option.ConnectionPassword</name>
      <value>123456</value>
      <description>数据库密码</description>
    </property>
    <!-- 数据库 end -->

    <property> 
      <name>hive.metastore.warehouse.dir</name>
      <value>/hive/warehouse</value>
      <description>hive使用的HDFS目录</description>
    </property>

    <property> 
      <name>hive.cli.print.current.db</name>
      <value>true</value>
    </property>
    <property>
      <name>hive.support.concurrency</name>
      <value>true</value>
      <description>开启Hive的并发模式</description>
    </property>
    <property>
      <name>hive.txn.manager</name>
      <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
      <description>用于并发控制的锁管理器类</description>
    </property>
    <property>
      <name>hive.server2.thrift.bind.host</name>
      <value>my2308-host</value>
      <description>hive开启的thriftServer地址</description>
    </property>

    <property>
      <name>hive.server2.thrift.port</name>
      <value>10000</value>
      <description>hive开启的thriftServer端口</description>
    </property>

    <property>
      <name>hive.server2.enable.doAs</name>
      <value>true</value>
    </property>

    <property>
       <name>hive.metastore.schema.verification</name>
       <value>false</value>
    </property>
    <property>
       <name>datanucleus.schema.autoCreateAll</name>
       <value>true</value>
    </property>
</configuration>

(2)在Spark配置文件spark-env.sh中指定Hadoop及其配置文件的主目录(根据自己的Hadoop安装目录修改)。

export HADOOP_HOME=/export/servers/hadoop-3.2.0
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop

(3) 将MySQL驱动JAR包复制到$SPARK_HOME/jars目录中(根据自己的目录复制)。

cp /export/servers/mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar /export/servers/spark/jars

Spark SQL操作Hive的几种方式

  • 方式一:Spark SQL终端操作(以Spark Standalone模式为例)
spark-sql --master spark://192.168.121.131:7077

进入Spark SQL终端后,以HiveQL的方式操作

  • 方式二:Spark Shell操作
spark-shell --master spark://192.168.121.131:7077

进入spark shell终端后,通过spark.sql(“HiveQL语句”)的方式操作

  • 方式三:提交Spark SQL应用程序

​ 在IDEA中编写Spark SQL操作Hive的应用程序,然后将编写好的应用程序打包为JAR,提交到Spark集群中运行,即可对Hive进行数据的读写与分析。

package spark.demo.sql
import org.apache.spark.sql.SparkSession
object SparkSQLHiveDemo {
  def main(args: Array[String]): Unit = {
      // 创建SparkSession对象
      val spark = SparkSession.builder().appName("Spark Hive Demo").enableHiveSupport().getOrCreate()
      // 创建表students
      spark.sql("create table if not exists students(id int,name string,age int)row format delimited fields terminated by '\t'")
      // 导入数据到表students
      spark.sql("load data local inpath '/root/data/students.txt' into table students")
      // 查询表students的数据
      spark.sql("select * from students").show()
  }
}

打包程序,然后提交到Spark集群

spark-submit --class spark.demo.sql.SparkSQLHiveDemo SparkDemo-1.0-SNAPSHOT.jar

注:Maven项目的pom.xml配置(仅供参考)

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>org.example</groupId>
  <artifactId>SparkDemo</artifactId>
  <version>1.0-SNAPSHOT</version>
  <inceptionYear>2008</inceptionYear>

  <repositories>
    <repository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </repository>
  </repositories>

  <pluginRepositories>
    <pluginRepository>
      <id>scala-tools.org</id>
      <name>Scala-Tools Maven2 Repository</name>
      <url>http://scala-tools.org/repo-releases</url>
    </pluginRepository>
  </pluginRepositories>

  <dependencies>
    <!--引入Scala依赖库-->
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>2.12.7</version>
    </dependency>
    <!-- 引入Spark核心库 -->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.12</artifactId>
      <version>3.3.3</version>
    </dependency>
  <!-- 引入SparkSQL核心库 -->
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_2.12</artifactId>
        <version>3.3.3</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.scala-tools/maven-scala-plugin -->
    <dependency>
      <groupId>org.scala-tools</groupId>
      <artifactId>maven-scala-plugin</artifactId>
      <version>2.12</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.maven.plugins/maven-eclipse-plugin -->
    <dependency>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-eclipse-plugin</artifactId>
      <version>2.5.1</version>
    </dependency>
  </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <version>2.12</version>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
        <configuration>
          <scalaVersion>2.12.7</scalaVersion>
          <args>
            <arg>-target:jvm-1.5</arg>
          </args>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-eclipse-plugin</artifactId>
        <version>2.5.1</version>
        <configuration>
          <downloadSources>true</downloadSources>
          <buildcommands>
            <buildcommand>ch.epfl.lamp.sdt.core.scalabuilder</buildcommand>
          </buildcommands>
          <additionalProjectnatures>
            <projectnature>ch.epfl.lamp.sdt.core.scalanature</projectnature>
          </additionalProjectnatures>
          <classpathContainers>
            <classpathContainer>org.eclipse.jdt.launching.JRE_CONTAINER</classpathContainer>
            <classpathContainer>ch.epfl.lamp.sdt.launching.SCALA_CONTAINER</classpathContainer>
          </classpathContainers>
        </configuration>
      </plugin>
    </plugins>
  </build>
  <reporting>
    <plugins>
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <configuration>
          <scalaVersion>2.12.7</scalaVersion>
        </configuration>
      </plugin>
    </plugins>
  </reporting>
</project>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1849512.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ArcGIS arcpy代码工具——批量要素裁剪栅格影像

系列文章目录 ArcGIS arcpy代码工具——批量对MXD文件的页面布局设置修改 ArcGIS arcpy代码工具——数据驱动工具批量导出MXD文档并同步导出图片 ArcGIS arcpy代码工具——将要素属性表字段及要素截图插入word模板 ArcGIS arcpy代码工具——定制属性表字段输出表格 ArcGIS arc…

容器之笔记本构件演示

代码&#xff1a; #include <gtk-2.0/gtk/gtk.h> #include <glib-2.0/glib.h> #include <gtk-2.0/gdk/gdkkeysyms.h> #include <stdio.h>void rotate_book(GtkButton *button, GtkNotebook *notebook) {gtk_notebook_set_tab_pos(notebook, (notebook…

MySQL进阶——SQL优化

目录 1插入数据 1.1 insert 1.2大批量插入数据 2主键优化 3 order by 优化 4 group by 优化 5 limit 优化 6 count 优化 6.1概述 6.2 count用法 7 update优化 1插入数据 1.1 insert 优化方案主要有3种 批量插入数据 Insert into tb_test values(1,Tom),(2,Cat)…

详解 ClickHouse 的副本机制

一、简介 副本功能只支持 MergeTree Family 的表引擎&#xff0c;参考文档&#xff1a;https://clickhouse.tech/docs/en/engines/table-engines/mergetree-family/replication/ ClickHouse 副本的目的主要是保障数据的高可用性&#xff0c;即使一台 ClickHouse 节点宕机&#…

Web渗透-CSRF跨站请求伪造

跨站请求伪造&#xff08;Cross-Site Request Forgery&#xff0c;CSRF&#xff09;是一种网络攻击&#xff0c;通过利用受害者的身份认证状态在不知情的情况下执行恶意操作。通常&#xff0c;这种攻击会诱使用户点击恶意链接或访问一个特制的网站&#xff0c;从而触发不被用户…

python库BeeWare,一个如雷贯耳的可以创建原生应用程序的库

目录 BeeWare 包括以下主要组件和工具&#xff1a; 创建BeeWare虚拟环境 配置BeeWare 创建一个新的BeeWare项目&#xff08; Hello World! &#xff09; 尝试 Hello World 样例 BeeWare 是一个开源项目&#xff0c;旨在帮助开发者使用 Python 创建原生应用程序&#xff0c;…

后端路线指导(4):后端春招秋招经验分享

后端春招&秋招经验分享 春招(暑期实习) /秋招是应届生非常重要的应聘时间,每一个想就业的同学一定要有所了解! 本篇内容&#xff0c;老白将与大家分享暑期实习和秋招如何应对招聘的个人经验&#xff0c;希望每个同学看完都能有所收获! 首先说明一下老白对于面试核心竞争力的…

Android图片圆角转换 RoundedImageView开源项目 小记

属性的意义: makeramen:border_width“2dip” 表示图片的边框宽度为2个dp makeramen: corner_radius表示为 图片转圆角的弧度 修改 makeramen:corner_radius“100dip” 当 corner_radius 设置为100dp 的时候 会呈现为圆形 . ( 注: com.makeramen.rounded.Ro…

MySQL表的增删改查初阶(下篇)

本篇会加入个人的所谓鱼式疯言 ❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言 而是理解过并总结出来通俗易懂的大白话, 小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的. &#x1f92d;&#x1f92d;&#x1f92d;可能说的不是那么严谨.但小编初心是能让更多人…

多重排序【今日题记】

多重排序 多重排序题目分析思路代码代码结构体知识多重排序 需要对多个条件进行排序,因此可以称之为多重排序。 题目 某生物实验室记录了n种(n<=1000)病毒信息,每种病毒都有编号、传染性和致病性三个基本信息,编号是1000-9999的人工编号,其中的传染性和致病性是用0-10…

SVN学习(002 svn冲突解决)

尚硅谷SVN高级教程(svn操作详解) 总时长 4:53:00 共72P 此文章包含第20p-第p29的内容 冲突 产生冲突的操作 &#xff08;第一种 相互不影响的操作&#xff09; 用户1修改第二行 用户2修改第四行 用户1提交 用户2提交&#xff0c;提交的时候会提示版本已过时 这时将用…

力扣SQL 即时食物配送 II min函数 嵌套查询

Problem: 1174. 即时食物配送 II &#x1f468;‍&#x1f3eb; 参考题解 Code -- 计算立即配送的订单百分比 select round (-- 计算订单日期与客户偏好配送日期相同的订单数量sum(case when order_date customer_pref_delivery_date then 1 else 0 end) * 100 /-- 计算总订…

掌握Three.js:学习路线,成为3D可视化开发的高手!

学习Three.js可以按照以下路线进行&#xff1a; 基础知识&#xff1a; 首先要了解基本的Web开发知识&#xff0c;包括HTML、CSS和JavaScript。如果对这些知识已经比较熟悉&#xff0c;可以直接进入下一步。 Three.js文档&#xff1a; 阅读Three.js官方文档是学习的第一步。官…

如何下载和安装SQLynx数据库管理工具? (MySQL作为测试数据库)

目录 1. 官网下载 2. 安装软件 3. 启动SQLynx软件 4. 开始使用 5. 执行第一条SQL语句 6. 总结 SQLynx是一款先进的Web SQL集成开发环境&#xff08;IDE&#xff09;&#xff0c;专为数据库管理、查询和数据分析设计。作为一个基于浏览器的工具&#xff08;同时也支持桌面…

掌握 NumPy:高效数组处理综合指南(第 1/2 部分)

掌握 NumPy&#xff1a;高效数组处理综合指南&#xff08;第 1/2 部分&#xff09; 文章目录 一、介绍二、什么是Numpy&#xff0c;我们为什么要使用它&#xff1f;三. 数组初始化四. 计算速度和内存使用量五、内存使用情况六、数据类型七、索引和切片 一、介绍 你们以前听说过…

连接和断开信号演示之二

代码; #include <gtk-2.0/gtk/gtk.h> #include <gtk-2.0/gdk/gdkkeysyms.h> #include <glib-2.0/glib.h> #include <stdio.h>void button_press(GtkEventBox *ebox,GdkEventButton *event,GtkLabel *label) {const char *citem;switch(event->type…

[图解]建模相关的基础知识-15

1 00:00:01,030 --> 00:00:05,820 接下来&#xff0c;我们就开始讲解的知识点 2 00:00:05,830 --> 00:00:11,810 就是范式知识点 3 00:00:12,130 --> 00:00:17,490 关系这个理论里面&#xff0c;随着历史的发展 4 00:00:17,700 --> 00:00:21,280 它发展出很多的…

力扣随机一题 模拟+字符串

博客主页&#xff1a;誓则盟约系列专栏&#xff1a;IT竞赛 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ 1910.删除一个字符串中所有出现的给定子字符串【中等】 题目&#xff1a; …

基于STM32的智能工厂环境监测系统

目录 引言环境准备智能工厂环境监测系统基础代码实现&#xff1a;实现智能工厂环境监测系统 4.1 数据采集模块4.2 数据处理4.3 控制系统实现4.4 用户界面与数据可视化应用场景&#xff1a;智能工厂管理与优化问题解决方案与优化收尾与总结 1. 引言 智能工厂环境监测系统通过…

【转】FreeRTOS通用移植,以keil和IAR工程 M7核为例

目录 keil: IAR keil: 原文在https://bbs.eeworld.com.cn/thread-1281875-1-1.html 本篇讲述移植FreeRTOS,并创建运行一个任务&#xff0c;对象芯片为M7系列的兆易创新GD32H7xx系列。 一.准备工作 1.下载FreeRTOS源码官网 http://www.freertos.org/ 或者托管网站FreeRTOS…