【CPP】插入排序、希尔排序

news2025/1/12 16:18:47

目录

  • 1.插入排序
    • 1.1直接插入排序
      • 简介
      • 代码
      • 分析
    • 1.2直接插入对比冒泡排序
      • 简介
      • 代码
      • 对比分析(直接插入排序与冒泡的复杂度效率区别)
    • 1.3希尔排序
      • 简介
      • 代码
      • 分析

1.插入排序

基本思想:把一个待排数字按照关键码值插入到一个有序序列中,得到一个新的有序序列。

1.1直接插入排序

简介

直接插入排序即是直接把一个待排数字插入一个有序序列的这种插入排序方法。

这类似于打牌时插排的情况:
在这里插入图片描述

请添加图片描述

我们写直接插入排序应该先写好单趟插入排序再写完整体的插入排序。

代码

我们假设要排升序。
且假设[0,end]有序,让end+1的数字插入到有序序列当中。

单趟插入排序:
直接插入排序的单趟存在下面两种情况:
在这里插入图片描述
每个数的插入:
在这里插入图片描述

完整插入排序:
我们由单趟直接插入排序扩展到多趟的插入排序。
在这里插入图片描述

问:数组位置0处可以存数据个数吗?
特殊情况下可以,但是不建议。
在这里插入图片描述

分析

最坏情况:O(N^2)
最好情况:O(N)

结论:直接插入排序适合基本有序的序列排序,不适合逆序排序。
插入排序在基本有序的情况下,时间复杂度接近O(N),因而直接插入排序比较适合于基本有序的序列排序。
但是,一旦碰到逆序的序列,时间复杂度直接到了O(N^2)。

1.2直接插入对比冒泡排序

与直接插入排序相似思路的是冒泡排序

简介

略。
在这里插入图片描述

代码

在这里插入图片描述

对比分析(直接插入排序与冒泡的复杂度效率区别)

最好的时间复杂度:O(N)
最差的时间复杂度:O(N^2)
冒泡排序与直接插入排序是一个量级的。但是仍然还有一些细微区别:

void TestOP()
{
	srand(time(0));
	const int N = 10000;
	int* a1 = (int*)malloc(sizeof(int) * N);
	int* a2 = (int*)malloc(sizeof(int) * N);
	int* a3 = (int*)malloc(sizeof(int) * N);
	int* a4 = (int*)malloc(sizeof(int) * N);
	int* a5 = (int*)malloc(sizeof(int) * N);
	int* a6 = (int*)malloc(sizeof(int) * N);
	int* a7 = (int*)malloc(sizeof(int) * N);

	for (int i = 0; i < N; ++i)
	{
		a1[i] = rand();
		a2[i] = a1[i];
		a3[i] = a1[i];
		a4[i] = a1[i];
		a5[i] = a1[i];
		a6[i] = a1[i];
		a7[i] = a1[i];
	}

	int begin1 = clock();
	insertSort(a1, N);
	int end1 = clock();

	int begin2 = clock();
	//ShellSort(a2, N);
	int end2 = clock();

	int begin3 = clock();
	//SelectSort(a3, N);
	int end3 = clock();

	int begin4 = clock();
	//HeapSort(a4, N);
	int end4 = clock();

	int begin5 = clock();
	//QuickSort(a5, 0, N - 1);
	int end5 = clock();

	int begin6 = clock();
	//MergeSort(a6, N);
	int end6 = clock();

	int begin7 = clock();
	bubbleSort(a7, N);
	int end7 = clock();

	printf("InsertSort:%d\n", end1 - begin1);
	printf("ShellSort:%d\n", end2 - begin2);
	printf("SelectSort:%d\n", end3 - begin3);
	printf("HeapSort:%d\n", end4 - begin4);
	printf("QuickSort:%d\n", end5 - begin5);
	printf("MergeSort:%d\n", end6 - begin6);
	printf("BubbleSort:%d\n", end7 - begin7);

	free(a1);
	free(a2);
	free(a3);
	free(a4);
	free(a5);
	free(a6);
	free(a7);
}

在这里插入图片描述

为什么会造成这种差异呢?
原因在于,冒泡排序每次单趟一定走n-1-i次(假设这是第i趟排序)。
但是,直接插入排序每次单趟一定小于或者等于走n-1-i次(假设这是第i趟排序),只有逆序情况下才与冒泡等价。

1.3希尔排序

简介

希尔排序就是先进行预排序,再进行排序的插入排序。

  • 预排序(让序列接近有序)
  • 直接插入排序

代码

在这里插入图片描述

在这里插入图片描述

分析

希尔排序时间复杂度是O(N^1.3)


EOF

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1849202.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高校新闻头条系统

摘 要 随着互联网技术的快速发展&#xff0c;网络几乎成为了人们搜集信息和交流沟通最方便、快捷的通道&#xff0c;科技创新一直在影响着人们的生活&#xff0c;人们的衣食住行也在不断变化&#xff0c;与此同时&#xff0c;也大大改变了人们获取信息的方式&#xff0c;人们获…

甘肃旅游服务平台的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;公告信息管理&#xff0c;景点管理&#xff0c;酒店管理&#xff0c;基础数据管理&#xff0c;美食管理 前台账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0…

kafka第二篇——主题创建,主题分区副本分配策略

目录 主题创建 引入 回顾主题&#xff0c;分区&#xff0c;副本关系 代码 主题分区副本分配策略 底层逻辑分析 主题创建 引入 为啥才开始在idea上跑代码&#xff0c;topic都没创建出来&#xff0c;就直接跑出来了? 这是因为AutoTopicCreationManger参数可以自动创建主题…

首个AI高考全卷评测结果出分,大模型“考生”表现如何?

内容提要 大部分大模型“考生”语文、英语科目表现良好&#xff0c;但在数学方面还有待加强。阅卷老师点评&#xff0c;在语文科目上&#xff0c;对于语言中的一些“潜台词”&#xff0c;大模型尚无法完全理解。在数学科目上&#xff0c;大模型的主观题回答相对凌乱&#xff0…

关于运用人工智能帮助自己实现英语能力的有效提升?

# 实验报告 ## 实验目的 - 描述实验的目标&#xff1a;自己可以知道&#xff0c;自己的ai学习方法是否可以有效帮助自己实现自己的学习提升。 预期结果&#xff1a;在自己利用科技对于自己进行学习的过程中&#xff0c;自己的成长速度应该是一个幂指数的增长 ## 文献回顾 根据…

LabVIEW开发电机故障监测系统

开发了一套基于LabVIEW的智能电机故障监测系统&#xff0c;通过实时监测和分析电机运行参数&#xff0c;实现故障预测和诊断。系统集成了振动传感器、温度传感器、数据采集模块和分析模块&#xff0c;利用RS-485通信总线和Modbus协议确保数据的高精度实时传输&#xff0c;故障预…

Bootloader -- U-Boot 介绍

Bootloader -- U-Boot 介绍 1 介绍1.1 概述1.2 知名 BootloaderLILO (Linux Loader)GRUB (GNU GRand Unified Bootloader)LoadlinROLO (Rockbox Loader)EtherbootLinuxBIOS (现在叫 coreboot)BLOBU-BootRedBoot 1.3 BootLoader 和 Monitor 区别1.4 U-Boot 的源码结构1.5 U-Boot…

Keil MDK生成LIB库以及使用LIB库

一.keil下lib静态库的使用具有以下优点&#xff1a; 1.封装源代码&#xff0c;对外不开放&#xff0c;提高保密性。 2.将标准功能函数封装成库&#xff0c;提高代码的复用性。 3.使用库开发&#xff0c;简化开发流程&#xff0c;提高开发效率。 4.系统调用库函数&#xff0…

无人直播不封号美女舞团3.0 多重防非操作(教程+素材+工具)

在这个数字化的时代&#xff0c;直播已经成为了一种新的商业模式。然而&#xff0c;如何打造一个24小时自动循环播放的直播间&#xff0c;并通过此获得收益&#xff0c;却是许多人面临的挑战。本文将介绍如何通过使用OBS和咩播软件&#xff0c;创建一个能够吸引人们进入直播间并…

VMware vSphere Bitfusion 4.5.4 - 面向 AI 和 ML 应用提供弹性基础架构

VMware vSphere Bitfusion 4.5.4 - 面向 AI 和 ML 应用提供弹性基础架构 请访问原文链接&#xff1a;VMware vSphere Bitfusion 4.5.4 - 面向 AI 和 ML 应用提供弹性基础架构&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org VM…

VBA学习(18):VBA制作任意工作表均可使用的聚光灯

在需要制作聚光的工作簿&#xff0c;按<ALTF11>组合键&#xff0c;打开VBE编辑器。在右侧[工程资源管理器窗格]选中ThisWorkbook模块&#xff0c;将以下代码复制粘贴到该模块的代码窗口。 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target …

软件缺陷及JIRA工具

一、软件缺陷及跟踪流程 1&#xff0c;软件缺陷信息 案例 &#xff08;1&#xff09;缺陷报告的基本内容 缺陷的标题 预置条件 重现步骤 期望结果 实际结果 &#xff08;2&#xff09;软件缺陷的状态 新建 打开 修复 关闭 &#xff08;3&#xff09;软件缺陷的严重程度 …

NeRF从入门到放弃3: EmerNeRF

https://github.com/NVlabs/EmerNeRF 该方法是Nvidia提出的&#xff0c;其亮点是不需要额外的2D、3Dbox先验&#xff0c;可以自动解耦动静field。 核心思想&#xff1a; 1. 动、静filed都用hash grid编码&#xff0c;动态filed比静态多了时间t&#xff0c;静态的hash编码输入是…

Python文件与面向对象知识点

目录 文件的基本概念 文件的读取 文件的追加 文件的写入 with语句 知识总结 面向对象的基本概念 类和实例 对象的属性和方法 类属性与方法 面向对象的三大特性 知识总结 文件的基本概念 文件的读取 文件的追加 文件的写入 with语句 知识总结 面向对象的基本概念 …

windows如何查看硬盘类型(查看磁盘类型)(查看是固态硬盘ssd还是机械硬盘hdd)(Windows优化驱动器——媒体类型)

文章目录 方法&#xff1a;使用Windows优化驱动器1、在任务栏搜索框中输入“优化驱动器”并打开它。2、在优化驱动器的窗口中&#xff0c;查看每个驱动器旁边的“媒体类型”。3、如果列出的是“固态驱动器”&#xff0c;那么它是SSD&#xff1b;如果是“硬盘驱动器”&#xff0…

新手充电-boost升压电路解析

1.boost升压电路解析 本篇文章从充放电两个方面来对Boost电路的原理进行了讲解。并在最后补充了一些书本上没有的知识,整体属于较为新手向的文章,希望大家在阅读过本篇文章之后,能对Boost电路的基本原理有进一步了解。 Boost电路是一种开关直流升压电路,它能够使输出电压高…

FuTalk设计周刊-Vol.031

&#x1f525;AI漫谈 热点捕手 1、如何用自然语言 5 分钟构建个人知识库应用&#xff1f;我的 GPTs builder 尝试 开发者的想象力闸门一旦打开&#xff0c;迎接我们的必然是目不暇接的 AI 应用浪潮冲击。 链接https://sspai.com/post/84325 2、GPT-4 Turbo、功能融合&#x…

基于java+springboot+vue实现的电商应用系统(文末源码+Lw)241

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本电商应用系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息&a…

轨道地铁智能录音无线通信解决方案

一、行业背景 随着社会经济和通信行业的迅速发展&#xff0c;电话已成为企业运作中必不可少的联络手段。但电话作为即时沟通手段&#xff0c;往往无法进行事后追溯和复盘&#xff0c;容易造成不必要的麻烦。尤其在交通轨交行业领域&#xff0c;对语音工作的发生过程更需要有个…

功率电源中器件的温升与极限工作温度

功率电源中器件的温升与极限工作温度 熟悉电子电路设计的朋友一定都知道,在电源整体设计中存在一些发热非常严重的器件,如整流桥、MOS管、快恢复二极管这些器件。而在功率电源中,电感和高频变压器则成为了发热现象的重灾区。那么在功率电源中,它们的合理温升应该是多少,在…