45、基于深度学习的螃蟹性别分类(matlab)

news2024/11/26 22:46:34

1、基于深度学习的螃蟹性别分类原理及流程

基于深度学习的螃蟹性别分类原理是利用深度学习模型对螃蟹的图像进行训练和识别,从而实现对螃蟹性别的自动分类。整个流程可以分为数据准备、模型构建、模型训练和性别分类四个步骤。

  1. 数据准备: 首先需要收集包含螃蟹图像和对应性别标签的数据集。数据集需要包含足够多的螃蟹图像,且每张图像需要标注正确的性别标签。然后对数据集进行预处理,如图像resize、归一化等操作。

  2. 模型构建: 在Matlab上选择适合的深度学习模型,如卷积神经网络(CNN)来构建螃蟹性别分类模型。可以选择预训练的模型,并进行微调以提高模型的性能。

  3. 模型训练: 将准备好的数据集输入到深度学习模型中,对模型进行训练。可以通过迭代训练的方式不断调整模型参数,提高模型的准确性和泛化能力。在训练过程中,需要对模型进行评估和调整,以提高模型对螃蟹性别的分类准确率。

  4. 性别分类: 训练好的模型可以用于测试新的螃蟹图像,对其性别进行分类。通过将图像输入到模型中,模型将输出螃蟹为雌性或雄性的概率。根据输出结果可以得到螃蟹的性别分类结果。

需要注意的是,在实际应用中,还需要考虑数据集的质量和数量、模型的选择和调整、训练参数的设置等方面的影响,以获得准确的螃蟹性别分类结果。

2、 基于深度学习的螃蟹性别分类说明

说明

使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。

方案

构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器

考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度

现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。

根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。

通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现

 3、准备数据

1)数据说明

将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。

2)加载该数据集

[x,t] = crab_dataset;
size(x)
size(t)

ans =

     6   200


ans =

     2   200

4、构建神经网络分类器

1)设置随机种子来避免随机性

 代码

setdemorandstream(491218382)

 2)说明

双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。

代码

net = patternnet(10);
view(net)

视图效果

 3)开始训练

说明:样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。

代码

[net,tr] = train(net,x,t);

试图效果

 4)均方误差

说明:性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。


代码

plotperform(tr)

视图效果

5、测试分类器 

1)使用测试样本测试经过训练的神经网络

 说明:网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。

代码

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)

testIndices =

  列 1 至 16

     1     2     1     1     2     1     1     1     2     1     1     1     1     2     2     1

  列 17 至 30

     2     1     2     2     1     2     2     1     1     2     2     2     1     2

2) 混淆矩阵图

说明:混淆矩阵图:衡量神经网络数据拟合程度
该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。

代码

plotconfusion(testT,testY)

视图效果

3) 正确和错误分类的总体百分比

代码

[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);

c =

    0.0333


cm =

    16     1
     0    13

Percentage Correct Classification   : 96.666667%
Percentage Incorrect Classification : 3.333333%

4) 受试者工作特征图

说明:显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。

代码

plotroc(testT,testY)

视图效果

 6、总结

螃蟹性别分类是一个常见的生物学问题,可以通过深度学习技术实现自动化分类。在MATLAB中,可以利用深度学习工具包如Deep Learning Toolbox来构建和训练性别分类模型。

首先,需要准备一个包含大量螃蟹图像和对应性别标签的数据集。然后,可以利用MATLAB中的图像数据存储和预处理功能,将图像数据加载和准备好用于模型训练。接下来,可以构建一个深度学习模型,如卷积神经网络(CNN),用于学习图像特征和进行性别分类。

在模型构建之后,需要将数据集划分为训练集和测试集,并利用MATLAB中的深度学习工具包进行模型训练和评估。可以使用预训练模型进行迁移学习,也可以自己从头开始训练模型。通过调整模型结构和超参数,可以优化性能并提高性别分类准确率。

最后,可以利用训练好的深度学习模型对新的螃蟹图像进行性别分类。通过将图像输入模型并获取预测结果,可以快速准确地识别螃蟹的性别。整个过程中,MATLAB的深度学习工具包提供了强大的功能和便捷的编程接口,帮助用户轻松实现螃蟹性别分类任务。

7、源代码

代码

%% 基于深度学习的螃蟹性别分类
%说明:使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。
%方案:构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器。考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度。现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
%六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。
%通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现
%% 准备数据
%说明:将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
%输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
%目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。
%加载该数据集
[x,t] = crab_dataset;
size(x)
size(t)
%% 构建神经网络分类器
%设置随机种子来避免随机性。
setdemorandstream(491218382)
%双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
%尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。
net = patternnet(10);
view(net)
%开始训练。样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。
[net,tr] = train(net,x,t);
%性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。
%绘图会显示训练集、验证集和测试集的性能。
plotperform(tr)
%% 测试分类器
%使用测试样本测试经过训练的神经网络。
%网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。
testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)
%混淆矩阵图:衡量神经网络数据拟合程度
%该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。
plotconfusion(testT,testY)
%正确和错误分类的总体百分比
[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);
%受试者工作特征图
%显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
%线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。
plotroc(testT,testY)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1848898.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C# 中的隐式和显式类型转换

当你需要转换值的类型时,可以使用类型转换。只有当你要转换的两种类型兼容时,才有可能。 当你收到错误“无法隐式将一种类型转换为另一种类型”时,说明你转换的两种类型不兼容。 int integer; // 声明一个名为 integer 的整型变量 integer …

【Gradio】如何设置 Gradio 数据框的样式

简介 数据可视化是数据分析和机器学习的关键方面。Gradio DataFrame 组件是一种流行的方式,在网络应用程序中显示表格数据(特别是以 pandas DataFrame 对象的形式)。 本文将探讨 Gradio 的最新增强功能,这些功能允许用户整合 pand…

解决vmware “处理器不支持 XSAVE。无法打开此虚拟机的电源。“

1,打开windows 10-11 的 虚拟机平台 选择 “开始”,输入“Windows 功能”,然后从结果列表中选择“打开或关闭 Windows 功能 ”。 在刚刚打开的 “Windows 功能”窗口中,找到“虚拟机平台 ”并将其选中。 选择“确定”。 可能需要重启电脑。…

节能减排如何替电子行业巨头降低成本

尖端科技与环境之间的矛盾,已经不再是科幻小说家笔下的虚构。 先进芯片制造从熔化硅开始,到使用大功率激光进行光刻,再到创造和维护真空状态,以及持续清洁工作,每一个环节都需要大量的电力支持。据统计,半…

在Windows上用MinGW编译OpenCV项目运行全流程

一、准备软件 OpenCV源码CMake工具MinGW工具链(需要选用 posix 线程版本:原因见此) 二、操作步骤 官网提供了VC16构建版本的二进制包,但是没有给出GCC编译的版本。所以如果使用MinGW进行构建,那就只能从源码开始构建…

聊聊 C# dynamic 类型,并分享一个将 dynamic 类型变量转为其它类型的技巧和实例

前言 dynamic 是一种有别于传统变量类型的动态类型声明,刚开始接触可能在理解上会有些困难,可以简单地把它理解为一个盲盒,你可以任意猜测盒子有什么东西,并认为这些东西真正存在而进行处理,等到真正打开时&#xff0…

【尚庭公寓SpringBoot + Vue 项目实战】预约看房与租约管理(完结)

【尚庭公寓SpringBoot Vue 项目实战】预约看房与租约管理(完结) 文章目录 【尚庭公寓SpringBoot Vue 项目实战】预约看房与租约管理(完结)1、业务说明2、接口开发2.1、预约看房管理2.1.1.保存或更新看房预约2.1.2. 查询个人预约…

mysql的安装以及分享navicat for MySQL

前言 根据网上分享的安装方法以及自己遇到的问题解决方法 一、mysql是什么? mysql 是一个开放源码的小型关联式数据库管理系统 二、安装过程 1.下载安装包 下载地址:MySQL :: Download MySQL Community Server 跳过直接下载,解压即可 …

10.华为路由器使用ospf动态路由连通两个部门网络

目的:实验ospf动态路由协议连通A与B部门 AR1配置 [Huawei]int g0/0/0 [Huawei-GigabitEthernet0/0/0]ip add 1.1.1.1 24 [Huawei]vlan batch 10 [Huawei]int Vlanif 10 [Huawei]int e0/0/0 [Huawei-Ethernet0/0/0]port link-type access [Huawei-Ethernet0/0/0]por…

Spring Bean 生命周期详解

Spring Bean 生命周期详解 在 Spring 框架中,Bean 的生命周期由 Spring 容器全权管理。了解和掌握 Bean 的生命周期对于使用 Spring 开发稳定且高效的应用程序至关重要。本文将详细介绍 Spring Bean 生命周期的五个主要阶段:实例化、属性注入、初始化、…

Avue-data数据大屏显示饼图(附Demo)

目录 前言1. Sql查询2. 颜色细节 前言 对于这部分知识,原先有过柱状图实战:Avue-data数据大屏显示柱状图(附Demo讲解) 以下直奔主题,以Sql数据库数据为主 1. Sql查询 以饼图为例,需要返回的形式如下&am…

在敏捷项目管理中实施 Scrum 方法

在本文中,我将阐明敏捷项目管理中的 Scrum 流程。我将深入探讨 Scrum 方法论中不可或缺的角色。本文将全面概述敏捷开发中的 Scrum 流程。我将解释 Scrum 的核心组件,详细探索端到端 Scrum 流程。在本文结束时,您将清楚地了解 Scrum 的工作原…

Ant Design Vue Cascader 级联选择 错位问题

当Cascader 多个的时候 对应的下列会错位 如果滚动 他不会跟着元素 而是会跟着屏幕滚动&#xff0c;如下效果 解决方法 在Cascader 标题添加 getPopupContainer 属性监听对应的位置&#xff0c;返回对应的元素 <a-cascader class"smart-width-100 " v-model:…

QThread 与QObject::moveToThread在UI中的应用

1. QThread的两种用法 第一种用法就是继承QThread&#xff0c;然后覆写 virtual void run()&#xff0c; 这种用法的缺点是不能利用信号槽机制。 第二种用法就是创建一个线程&#xff0c;创建一个对象&#xff0c;再将对象moveToThread, 这种可以充分利用信号槽机制&#xff…

Android-Android Studio-FAQ

1 需求 2 接口 3 Android Studio xml布局代码补全功能失效问题 最终解决方案就是尝试修改compileSdk 为不同SDK版本来解决问题&#xff0c;将原本34修改为32测试会发现xml代码补全功能有效了&#xff01; 参考资料 Android Studio xml布局代码补全功能失效问题_android studi…

华为DCN技术:M-LAG

M-LAG&#xff08;Multichassis Link Aggregation Group&#xff09;即跨设备链路聚合组&#xff0c;是一种实现跨设备链路聚合的机制。M-LAG主要应用于普通以太网络、VXLAN和IP网络的双归接入&#xff0c;可以起到负载分担或备份保护的作用。相较于另一种常见的可靠性接入技术…

vue实现的商品列表网页

一、商品列表效果如下 二、代码&#xff1b; vue实现的商品列表网页 &#xff0c; 图片在vue项目的Public文件夹里的 imgs中 <template><div class"common-layout"><!-- el-container:外层容器。 当子元素中包含 <el-header> 或 <el-foo…

每天写java到期末考试(6.22)--集合5--练习

集合方法 正常输入对象到集合里面&#xff0c;运用public使用类方法 import java.util.ArrayList;public class test {public static void main(String[] args) {ArrayList<Student> listnew ArrayList<>();//2.创建学生对象Student s1new Student("yanxiao1&…

Allegro X PCB设计小诀窍系列--如何在Allegro X中将动态铜皮冻结

背景介绍&#xff1a;我们在进行PCB设计时&#xff0c;经常会用到动态铜皮&#xff0c;因为动态铜皮可以根据约束规则设置进行自动调整。但是在一些设计场景中&#xff0c;设计人员不希望对印制板的调整影响到动态铜皮&#xff0c;如果将动态铜皮转换为静态铜皮&#xff0c;又可…

Apple - Core Foundation Design Concepts

本文翻译整理自&#xff1a;Core Foundation Design Concepts&#xff08;更新日期&#xff1a;2013-12-16 https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFDesignConcepts/CFDesignConcepts.html#//apple_ref/doc/uid/10000122i 文章…