昇思25天学习打卡营第4天|网络构建|函数式自动微分

news2024/11/27 22:21:17

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)

网络构建

神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell,它由不同的子Cell构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。

下面我们将构建一个用于Mnist数据集分类的神经网络模型。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import mindspore
from mindspore import nn, ops

定义模型类

当我们定义神经网络时,可以继承nn.Cell类,在__init__方法中进行子Cell的实例化和状态管理,在construct方法中实现Tensor操作。

construct意为神经网络(计算图)构建,相关内容详见使用静态图加速。

class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
            nn.ReLU(),
            nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

构建完成后,实例化Network对象,并查看其结构。

model = Network()
print(model)

我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。

model.construct()方法不可直接调用。

X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits

在此基础上,我们通过一个nn.Softmax层实例来获得预测概率。

pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

使用nn.Cell作为基类来定义自己的神经网络模型Network。在__init__方法中初始化所需的神经网络层,并在construct方法中定义前向传播过程。

实例化自定义的网络类Network,调用模型实例model处理输入数据X,得到预测输出logits。通过nn.Softmax转换为各分类的概率。

模型层

本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。

input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)

nn.Flatten

实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)

nn.Dense

nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。

layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)

nn.ReLU¶

nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。

print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")

nn.SequentialCell¶

nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell来快速组合构造一个神经网络模型。

seq_modules = nn.SequentialCell(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Dense(20, 10)
)

logits = seq_modules(input_image)
print(logits.shape)

nn.Softmax¶

最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis指定的维度数值和为1。

softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)

nn.Flatten展平输入数据,nn.Dense全连接层,nn.ReLU非线性激活函数,nn.SequentialCell有序地组合这些层,形成一个完整的网络结构。nn.Softmax将网络的原始输出转换为概率分布,以进行分类预测。

模型参数

网络内部神经网络层具有权重参数和偏置参数(如nn.Dense),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names() 来获取参数名及对应的参数详情。

print(f"Model structure: {model}\n\n")

for name, param in model.parameters_and_names():
    print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")

更多内置神经网络层详见mindspore.nn API。

查看模型的结构和参数详情。

面向对象编程: 利用MindSpore的nn.Cell基类,使用面向对象的编程风格来构建和管理网络结构。

模块化: 将不同的神经网络层封装成模块,灵活地组合和重用这些模块组合成完整的网络。

调试和可视化: 查看每层的输出和参数对于调试和理解模型有帮助。

函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。

MindSpore使用函数式自动微分的设计理念,提供更接近于数学语义的自动微分接口gradvalue_and_grad。下面我们使用一个简单的单层线性变换模型进行介绍。        

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor, Parameter

函数与计算图

计算图是用图论语言表示数学函数的一种方式,也是深度学习框架表达神经网络模型的统一方法。我们将根据下面的计算图构造计算函数和神经网络。

compute-graph

在这个模型中,𝑥为输入,𝑦为正确值,𝑤和𝑏是我们需要优化的参数。

x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

我们根据计算图描述的计算过程,构造计算函数。 其中,binary_cross_entropy_with_logits 是一个损失函数,计算预测值和目标值之间的二值交叉熵损失。

def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

执行计算函数,可以获得计算的loss值。

loss = function(x, y, w, b)
print(loss)

根据计算图构造计算函数和神经网络。定义损失函数(二值交叉熵)计算预测值与目标值之间的损失。

微分函数与梯度计算¶

为了优化模型参数,需要求参数对loss的导数:$\frac{\partial \operatorname{loss}}{\partial w}$$\frac{\partial \operatorname{loss}}{\partial b}$,此时我们调用mindspore.grad函数,来获得function的微分函数。

这里使用了grad函数的两个入参,分别为:

  • fn:待求导的函数。
  • grad_position:指定求导输入位置的索引。

由于我们对𝑤和𝑏求导,因此配置其在function入参对应的位置(2, 3)

使用grad获得微分函数是一种函数变换,即输入为函数,输出也为函数。

grad_fn = mindspore.grad(function, (2, 3))

执行微分函数,即可获得𝑤、𝑏对应的梯度。

grads = grad_fn(x, y, w, b)
print(grads)

使用MindSpore的grad函数,获得指定参数位置grad_position的梯度。

Stop Gradient¶

通常情况下,求导时会求loss对参数的导数,因此函数的输出只有loss一项。当我们希望函数输出多项时,微分函数会求所有输出项对参数的导数。此时如果想实现对某个输出项的梯度截断,或消除某个Tensor对梯度的影响,需要用到Stop Gradient操作。

这里我们将function改为同时输出loss和z的function_with_logits,获得微分函数并执行。

def function_with_logits(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, z
grad_fn = mindspore.grad(function_with_logits, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

可以看到求得𝑤、𝑏对应的梯度值发生了变化。此时如果想要屏蔽掉z对梯度的影响,即仍只求参数对loss的导数,可以使用ops.stop_gradient接口,将梯度在此处截断。我们将function实现加入stop_gradient,并执行。

def function_stop_gradient(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, ops.stop_gradient(z)
grad_fn = mindspore.grad(function_stop_gradient, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

可以看到,求得𝑤、𝑏对应的梯度值与初始function求得的梯度值一致。

阻止某个Tensor对梯度的影响,可以使用ops.stop_gradient接口来实现梯度的截断。

Auxiliary data

Auxiliary data意为辅助数据,是函数除第一个输出项外的其他输出。通常我们会将函数的loss设置为函数的第一个输出,其他的输出即为辅助数据。

gradvalue_and_grad提供has_aux参数,当其设置为True时,可以自动实现前文手动添加stop_gradient的功能,满足返回辅助数据的同时不影响梯度计算的效果。

下面仍使用function_with_logits,配置has_aux=True,并执行。

grad_fn = mindspore.grad(function_with_logits, (2, 3), has_aux=True)
grads, (z,) = grad_fn(x, y, w, b)
print(grads, z)

可以看到,求得𝑤、𝑏对应的梯度值与初始function求得的梯度值一致,同时z能够作为微分函数的输出返回。

在微分函数grad中,除了主要的输出(如loss)之外,还可能有其他的辅助输出。使用has_aux参数可以满足返回辅助数据的同时不影响梯度计算。

神经网络梯度计算

前述章节主要根据计算图对应的函数介绍了MindSpore的函数式自动微分,但我们的神经网络构造是继承自面向对象编程范式的nn.Cell。接下来我们通过Cell构造同样的神经网络,利用函数式自动微分来实现反向传播。

首先我们继承nn.Cell构造单层线性变换神经网络。这里我们直接使用前文的𝑤𝑤、𝑏𝑏作为模型参数,使用mindspore.Parameter进行包装后,作为内部属性,并在construct内实现相同的Tensor操作。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.w = w
        self.b = b

    def construct(self, x):
        z = ops.matmul(x, self.w) + self.b
        return z

接下来我们实例化模型和损失函数。

# Instantiate model
model = Network()
# Instantiate loss function
loss_fn = nn.BCEWithLogitsLoss()

完成后,由于需要使用函数式自动微分,需要将神经网络和损失函数的调用封装为一个前向计算函数。

# Define forward function
def forward_fn(x, y):
    z = model(x)
    loss = loss_fn(z, y)
    return loss

完成后,我们使用value_and_grad接口获得微分函数,用于计算梯度。

由于使用Cell封装神经网络模型,模型参数为Cell的内部属性,此时我们不需要使用grad_position指定对函数输入求导,因此将其配置为None。对模型参数求导时,我们使用weights参数,使用model.trainable_params()方法从Cell中取出可以求导的参数。

grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())
loss, grads = grad_fn(x, y)
print(grads)

执行微分函数,可以看到梯度值和前文function求得的梯度值一致。

基于nn.Cell的神经网络模型,可以使用value_and_grad接口结合模型的trainable_params()方法来计算梯度。

自动微分:自动微分简化了梯度计算过程,让开发者可以专注于模型设计而非复杂的数学推导。MindSpore通过value_and_gradgrad支持面向对象的模型定义(继承nn.Cell)和函数式自动微分。

计算图:计算图以图形方式表示了函数的运算流程,使得自动微分能够按图进行反向传播。

梯度计算:MindSpore允许对特定的函数输入位置进行梯度计算(通过grad_position参数),并且提供了ops.stop_gradient来控制哪些部分参与梯度计算。通过has_aux=True,可以在计算梯度的同时返回辅助数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1848534.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring AOP实战--之优雅的统一打印web请求的出参和入参

背景介绍 由于实际项目内网开发,项目保密,因此本文以笔者自己搭建的demo做演示,方便大家理解。 在项目开发过程中,团队成员为了方便调试,经常会在方法的出口和入口处加上log输出,由于每个人的log需求和输…

svm和决策树基本知识以及模型评价以及模型保存

svm和决策树基本知识以及模型评价以及模型保存 文章目录 一、SVM1.1,常用属性函数 二、决策树2.1,常用属性函数2.2,决策树可视化2.3,决策树解释 3,模型评价3.1,方面一(评价指标)3.2&…

js浅拷贝和深拷贝的区别

JavaScript中的浅拷贝和深拷贝的主要区别在于它们如何处理引用类型的数据。 浅拷贝仅复制对象的引用,而不复制对象本身。这意味着新旧对象共享同一块内存空间。因此,如果修改了原始对象,复制的对象也会相应地改变,因为它们实际上是…

Webstorm vue项目@路径不能跳转到对应资源,提示Cannot find declaration to go to

Webstorm vue项目路径不能跳转到对应资源,提示Cannot find declaration to go to 我们 ctrl加鼠标左键点击方法会失效,看了网上很多教程在说需要在此处配置一下webpack.config.js的文件路径,而且指向了node_modules\vue\cli-service\webpack.config.js 我…

网络安全:Web 安全 面试题.(SQL注入)

网络安全:Web 安全 面试题.(SQL注入) 网络安全面试是指在招聘过程中,面试官会针对应聘者的网络安全相关知识和技能进行评估和考察。这种面试通常包括以下几个方面: (1)基础知识:包括网络基础知识、操作系…

基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 卷积神经网络(CNN) 4.2 CNN-GRU模型架构 4.3 CNN-GRU结合PSO的时间序列预测 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软…

Maven笔记(更新中)

一、Maven简介 Maven是一款为Java项目构建,依赖管理的工具(软件),使用Maven可以自动化构建,测试,打包和发布项目,大大提高了开发效率和质量 Maven主要作用理解 依赖管理 Maven可以管理项目的依赖,包括自动下载所需依赖库,自动下载依赖所需的依赖并且保证版本没有冲突,依赖版…

小米红米手机刷Hyper澎湃OS欧版EU教程-全球语言-完整GO框架-纯净飞速

有很多小伙伴喜欢刷小米欧版EU系统,EU版本由于很多base_china,自然稳定性来说,相对于别的区域来说,稳定真的太多,不会出现信号或者相机等奇奇怪怪的BUG,这也是我 们将欧版EU作为第一选择的原因。从界面来看…

OpenHarmony-HDF驱动框架介绍及加载过程分析

前言 HarmonyOS面向万物互联时代,而万物互联涉及到了大量的硬件设备,这些硬件的离散度很高,它们的性能差异与配置差异都很大,所以这要求使用一个更灵活、功能更强大、能耗更低的驱动框架。OpenHarmony系统HDF驱动框架采用C语言面…

综合评价 | 基于因子分析和聚类分析的节点重要度综合评价(Matlab)

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 综合评价 | 基于因子分析和聚类分析的节点重要度综合评价(Matlab) 程序设计 完整程序和数据获取方式:私信博主回复基于因子分析和聚类分析的节点重要度综合评价(Matlab…

张量 Tensor学习总结

张量 Tensor 张量是一种多线性函数,用于表示矢量、标量和其他张量之间的线性关系,其在n维空间内有n^r个分量,每个分量都是坐标的函数。张量在坐标变换时也会按照某些规则作线性变换,是一种特殊的数据结构,在MindSpore…

【odoo】常用的基本视图类型

概要 在Odoo中,有几种基本视图类型,每种视图类型用于不同的目的和场景。这些视图类型包括表单视图(form view)、树视图(tree view)、看板视图(kanban view)、图表视图(gr…

海口注册公司代理记账的服务优势与流程解析

在海口注册公司加入代理记账服务有多种优势。代理记账公司提供专业的财务服务,帮助企业节约成本、提高效率,实现财务管理的合规性。以下是代理记账服务的主要优势和流程解析: https://www.9733.cn/news/detail/173.html 一、代理记账服务的…

Python酷库之旅-第三方库openpyxl(02)

目录 一、 openpyxl库的由来 1、背景 2、起源 3、发展 4、特点 4-1、支持.xlsx格式 4-2、读写Excel文件 4-3、操作单元格 4-4、创建和修改工作表 4-5、样式设置 4-6、图表和公式 4-7、支持数字和日期格式 二、openpyxl库的优缺点 1、优点 1-1、支持现代Excel格式…

时序预测 | Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于CNN-BiLSTM-Attention多变量时间序列多步预测; 2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据&…

make与makefile

目录 一、make的默认目标文件与自动推导 二、不能连续make的原因 执行原理 touch .PHONY伪目标 make指令不回显 makefile多文件管理 简写依赖方法 三、回车与换行 四、缓冲区 一、make的默认目标文件与自动推导 假设这是一个makefile文件,make的时候默认生…

百度文心智能体,创建属于自己的智能体应用

百度文心智能体平台为你开启。百度文心智能体平台,创建属于自己的智能体应用。百度文心智能体平台是百度旗下的智能AI平台,集成了先进的自然语言处理技术和人工智能技术,可以用来创建属于自己的智能体应用,访问官网链接&#xff1…

【地质灾害监测实现有效预警,44人提前安全转移】

6月13日14时,国信华源地质灾害监测预警系统提前精准预警,安全转移10户44人。 该滑坡隐患点通过科学部署国信华源裂缝计、倾角加速度计、雨量计、预警广播等自动化、智能化监测预警设备,实现了对隐患点裂缝、位移、降雨量等关键要素的实时动态…

嵌入式Linux驱动开研发流程详细解析

大家好,今天主要给大家分享一下,嵌入式linux中重要的内容详解。 一、驱动概念 驱动与底层硬件直接打交道,充当了硬件与应用软件中间的桥梁。 具体任务 读写设备寄存器(实现控制的方式) 完成设备的轮询、中断处理、DMA通信(CPU与外设通信的方式) 进行物理内存向虚拟内存…

nodejs执行 npm run dev时错误

INFO Starting development server… 95% emitting CompressionPlugin ERROR Error: error:0308010C:digital envelope routines::unsupported 我的node.js 的版本是 node-v20.11.0-x64 ,听说16以上的版本会有这个问题,具体是什么忘了。需要在npm run …