算法设计与分析:分治法求最近点对问题

news2024/11/24 7:47:00

实验目的

1. 掌握分治法思想;

2. 学会最近点对问题求解方法。

、实验内容

1. 对于平面上给定的N个点,给出所有点对的最短距离,即,输入是平面上的N个点,输出是N点中具有最短距离的两点。

2. 要求随机生成N个点的平面坐标,应用蛮力法编程计算出所有点对的最短距离。

3. 要求随机生成N个点的平面坐标,应用分治法编程计算出所有点对的最短距离。

4. 分别对N=100000~1000000,统计算法运行时间,比较理论效率与实测效率的差异,同时对蛮力法和分治法的算法效率进行分析和比较。

5. 如果能将算法执行过程利用图形界面输出,可获加分。

算法思想

1. 预处理:根据输入点集S中的x轴和y轴坐标进行排序,得到X和Y,很显然此时X和Y中的点就是S中的点。

2. 点数较少时的情形

3. 点数|S|>3时,将平面点集S分割成为大小大致相等的两个子集SL和SR,选取一个垂直线L作为分割直线,如何以最快的方法尽可能均匀平分?注意这个操作如果达到效率O(n^2),将导致整个算法效率达O(n^2)。

4. 两个递归调用,分别求出SL和SR中的最短距离为dl和dr。

5. 取d=min(dl, dr),在直线L两边分别扩展d,得到边界区域Y,Y'是区域Y中的点按照y坐标值排序后得到的点集(为什么要排序?),Y'又可分为左右两个集合Y'L和Y'R

6. 对于Y'L中的每一点,检查Y'R中的点与它的距离,更新所获得的最近距离,注意这个步骤的算法效率,请务必做到线性效率,并在实验报告中详细解释为什么能做到线性效率?

、实验步骤

先定义全局变量和点结构:

#define max 10000000000;//假定最大距离
int n,m,**v;
//n为规模,m为创建点集合过程时的点数,v用于判断是否已有该点(rand不产生大于40000的数)
double time1,time2;//蛮力法、分治法花费的时间
double dt1,dt2;//蛮力法、分治法求得的最近距离
//---------------------------
struct D{//点结构
    int x=0,y=0;
};
D a1,b1,a2,b2;//a1、b1为蛮力法求得的点的下标,a2、b2为分治法求得的点的下标
D *k,*p;//蛮力法、分治法用的点集合

1、蛮力法

        对前面n-1个点的每一个点,均与在其后面的每个点进行距离计算,并与最小距离min比较,若比min小,则更新min的值,时间复杂度为O(n2)。

    伪代码:

Manli(A)
    min=Infinity//最小距离
    for i=0 to A.length-1
        for j=i+1 to A.length
            d=dis(A[i],A[j])//A[i]、A[j]两点的距离
            if d<min
                min=d
                a=i
                b=j
    a1=a
    b1=b
    return min

2、分治法

2.1 先用快速排序SortX(A,1,n)将所有点按x坐标升序排序

        方便分治均匀,时间复杂度为O(nlgn)。 

SortX(l,r)
    i=l,j=r,keyx=A[l].x,keyy=A[l].y //Array A is a global variable
    while i<j
        while i<j and A[j].x>=keyx
            j--
        if i<j
            A[i]=A[j]
            i++
        else
            break
        while i<j and A[i].x<=keyx
            i++
        if i<j
            A[j]=A[i]
            j--
    A[i].x=keyx,A[i].y=keyy
    if(l<i-1) 
        SortX(l,i-1)
    if(i+1<r) 
        SortX(i+1,r)
2.2 点数n<=3时直接计算,时间复杂度为O(1)

2.3 点数n>3

        将平面点集S分割成为大小大致相等的两个子集SL和SR,选取一个垂直线L(以x坐标居中的为分治点,上面已排序好了)作为分割直线。

        两个子集递归调用(当只有一个元素时返回无穷大,两个时按y升序排序这两个元素),分别求出SL和SR中的最短距离dl和dr。

        取最小值d=min(dl, dr),在直线L两边分别扩展d,得到边界区域Y。       

        然后用Marge(l,mid,r)函数按纵坐标升序归并左右两部分点集合,时间复杂度O(n)

        由于前面点已按y升序排序,所以在区域Y中,两点距离小于当前min的可能情况为在一个长2*d,、宽d的长方形内。

        由于已知两边的最小距离为d,则对在这个长方形内任意一点P,距P为d的点Q的个数不超过6个,例如下面的点P最多在左右两个正方形的6条边上各有一个点距P为d(但是此情况下,在同一个正方形内的其他两个点的距离已经小于当前最小距离小于d了,所以可能的点数不超过6);

        再或者是说,在这个长方形内,最多就六个点相距d,即六个顶点。

        所以,只需要对t点集中的每个点与其后面的5个点比较距离是否小于当前最小距离d并更新d就行。时间复杂度O(n)。

        综上所述,T(n)=2*T(n/2)+f(n)。f(n)为Marge和遍历t点集,时间复杂度均为O(n),共递归lgn次,则时间复杂度为O(nlgn)。前面按x坐标排序的时间复杂度为O(nlgn),所以总的时间复杂度为O(nlgn)。

        伪代码如下:

Fenzhi(l,r)

    if l==r //一个点

        return max //直接返回无穷大

    if l+1==r //两个点,按y升序排序

        a2=A[l]

        b2=A[r]

        A[l]=a2.y<b2.y?a2:b2 //y坐标较小的点

        A[r]=a2.y>b2.y?a2:b2 //y坐标较大的点
    
        return dis(A[l],A[r])

    if l+1<r //点数大于2

        mid=(r+l)/2 mid为分治中点,将点集合划分为左右均匀的两部分

        d=min(Fenzhi(l,mid),Fenzhi(mid+1,r))//d取左右两部分最小距离的较小值

        Merge(l,mid,r) //按纵坐标升序归并左右两部分的点

        *t=new Point[r-l+1]

        //记录跨中线且距离分治中点d水平距离小于当前最小值d的异侧点

        tn=0 //t点集的元素个数

        for i=1 to r

            if A[i].x>(A[i].x-d) and A[i].x<(A[i].x+d)//异侧且距分治中心mid小于d则入t

                t[tn++]=A[i]

        for i=0 to tn-1

            for j=i+1 to tn-1 and j<i+6 //往后判断5个点

            //t[]中y升序,若y坐标差已超过当前d,break,判断下一个点

                if t[j].y-t[i].y>d

                    break

                if dis(t[i],t[j])<d //如果当前点距离小于等于当前d,则对最小距离d进行更新

                    d=dis(t[i],t[j])

                    a2=t[i]

                    b2=t[j]

        return d //返回当前分治的最小距离

        运行结果如下(取其中两例):两种方法求得的最近距离一致(虽然不一定是同一对点),且分治法更快。可见算法查找正确。

五、实验结果和分析

        分别对N=100000~1000000,统计算法运行时间,比较理论效率与实测效率的差异,同时对蛮力法和分治法的算法效率进行分析和比较。

        这里修改了代码,对每个规模N均运行5趟取平均时间。

算法

规模N:

5000

10000

20000

30000

50000

70000

100000

蛮力法

实测效率/s

0.334

1.2372

4.7186

10.0754

30.1722

59.1302

120.953

理论效率/s

0.3076

1.2304

4.9216

11.0736

30.76

60.2896

123.04

                                                                             表1

算法

规模N:

50000

100000

200000

300000

500000

700000

1000000

分治法

实测效率/s

0.058

0.156

0.266

0.3618

0.726

1.012

1.44

理论效率/s

0.0601

0.1278

0.271

0.42

0.7283

1.0458

1.5336

        对于蛮力法,

                                                                 T实测=k·n2实测      

                                                                 T理论=k·n2理论

        所以可得                                       

                                                        T理论=T实测·(n理论/n实测)2

        根据上式,以N=10000为基准,求出蛮力法的理论效率。

        对于分治法

                                                                T实测=k·n实测lgn实测      

                                                                T理论=k·n理论lgn理论

        所以可得           

                                                T理论=T实测·(n理论·lgn理论)/(n实测·lgn实测)

        根据上式,以N=100000为基准,求出分治法的理论效率。

        作出蛮力法的实测效率和理论效率曲线图如下:

        可以看出,实测效率和理论效率曲线贴合度很高,也都符合n2二次曲线。n=100000时的时间消耗,基本约为n=10000时的100倍。

        作出分治法的实测效率和理论效率的曲线图如下:

        可以看出,分治法的实测曲线和理论曲线贴合度还行,但没有蛮力法的两条贴合度高,可能是由于实验次数不够大(只进行5次取平均)。符合nlgn型曲线走势。

        对比两种方法,分治法效率明显由于蛮力法,尤其是当规模N持续增大时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1847274.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

项目训练营第三天

项目训练营第三天 注册登录测试 前面我们编写了用户注册、登录的逻辑代码&#xff0c;每编写完一个功能模块之后&#xff0c;我们都要对该模块进行单元测试&#xff0c;来确保该功能模块的正确性。一般情况下使用快捷键Ctrl Shift Insert&#xff0c;鼠标左击类名可以自动生…

灵活的招聘管理系统有五种方法帮助成功招聘

还记得以前的时代吗&#xff1f;这取决于你的年龄&#xff0c;直到智能手机、流媒体电视和电子邮件出现。今天&#xff0c;任何活着的成年人都经历了技术上的巨大变化&#xff0c;这创造了一种新的行为方式。人才获取也是如此。 一个值得推荐的招聘管理系统 招聘团队被困在满足…

机器人系统工具箱的 Gazebo 模拟

Gazebo 联合仿真模块 机器人系统工具箱> Gazebo联合仿真模块库包含与仿真环境相关的 Simulink 模块。要查看该库&#xff0c;在 MATLAB 命令提示符下输入robotgazebolib。

AIGC-CVPR2024best paper-Rich Human Feedback for Text-to-Image Generation-论文精读

Rich Human Feedback for Text-to-Image Generation斩获CVPR2024最佳论文&#xff01;受大模型中的RLHF技术启发&#xff0c;团队用人类反馈来改进Stable Diffusion等文生图模型。这项研究来自UCSD、谷歌等。 在本文中&#xff0c;作者通过标记不可信或与文本不对齐的图像区域&…

机器学习(V)--无监督学习(六)流形学习

title: 机器学习(V)–无监督学习(二)流形学习 date: katex: true categories: Artificial IntelligenceMachine Learning tags:机器学习 cover: /img/ML-unsupervised-learning.png top_img: /img/artificial-intelligence.jpg abbrlink: 26cd5aa6 description: 流形学习 【降…

String(C++)

文章目录 前言文档介绍经典题目讲解HJ1 字符串最后一个单词的长度 模拟实现框架构造函数析构函数迭代器c_str()赋值size()capacity()reserveempty()[ ]访问front/backpush_backappendoperatorinsert一个字符insert一个字符串eraseswapfind一个字符find一个字符串substr()clear(…

集群开发学习(三)修改用户模块(git 使用,局域网设代理)

git 使用 参考&#xff1a;https://blog.csdn.net/weixin_60033897/article/details/136016074 在服务器端创建公钥私钥 git config --global user.email "1686660735qq.com" git config --global user.name qinliangql git config --global -l # 查看信息# 这样可…

基于组件的架构:现代软件开发的基石

目录 前言1. 基于组件的架构概述1.1 什么是组件&#xff1f;1.2 组件的分类 2. 基于组件的架构的优势2.1 提高代码的可重用性2.2 增强系统的灵活性2.3 简化维护和升级2.4 促进团队协作 3. 实现基于组件的架构3.1 识别和定义组件3.2 设计组件接口3.3 组件的开发和测试3.4 组件的…

摊牌了,我不装了~各种Amazon Bedrock小样儿、试用装,今天免费!

探索世界顶级的大模型、智能体、文生图、对话机器人……新手&#xff1f;还是专家&#xff1f;加入我们&#xff0c;解锁精彩内容&#xff1a; l 初体验&#xff1a;在 Amazon Bedrock Playground 直接调用强大的大模型&#xff0c;点亮生成式AI技能树。 l 文生图&#xff1a…

代码随想录训练营Day 65|卡码网99岛屿数量 深搜、99.岛屿数量 广搜 、100.岛屿的最大面积

1.岛屿数量 深搜 99. 岛屿数量 | 代码随想录 代码&#xff1a;&#xff08;在符合递归条件时进行递归处理&#xff09; #include <iostream> #include <vector> using namespace std; int dir[4][2] {1,0,0,1,-1,0,0,-1}; // 表示4个方向 上下左右 void dfs(cons…

每日练题(py,c,cpp).6_19,6_20

检验素数 from math import sqrt a int(input("请输入一个数&#xff1a;")) for i in range(2,int(sqrt(a))):if a%i 0:print("该数不是素数")breakelse: print("该数是素数")# # 1既不是素数也不是合数 # #可以用flag做标志位 # b int(…

向“黑公关”开战,比亚迪悬赏500万征集恶意诋毁线索

近日&#xff0c;比亚迪品牌及公关处总经理李云飞在微博发文&#xff0c;面向社会公开征集黑公关证据。 微博中&#xff0c;李云飞写道&#xff1a;“近期&#xff0c;我们收到多方提醒&#xff1a;某车企在使用黑公关手段&#xff0c;对我司品牌及产品进行贬低、拉踩和恶意诋…

c++里对 new 、delete 运算符的重载

&#xff08;1&#xff09;c 里 我们可以用默认的 new 和 delete 来分配对象和回收对象。 new 可以先申请内存&#xff0c;再调用对象的构造函数&#xff1b; delete 则先调用对象的析构函数&#xff0c;再回收内存。当然&#xff0c;当我们为类定义了 operator new () 和 oper…

Qt坐标系统

目录 概述 渲染 逻辑表示 锯齿绘制 转换 模拟时钟示例 Window-Viewport转换 概述 坐标系统由QPainter类控制。与QPaintDevice和QPaintEngine类一起&#xff0c;QPainter构成了Qt绘画系统的基础。QPainter用于执行绘制操作&#xff0c;QPaintDevice是一个二维空间的抽象&…

L54--- 404.左叶子之和(深搜)---Java版

1.题目描述 2.思路 递归遍历左子树 &#xff0c;然后再把左子树的和相加 3.代码实现 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val …

JavaScript之类(1)

class基础语法结构&#xff1a; 代码&#xff1a; class MyClass {constructor() { ... }method1() { ... }method2() { ... }method3() { ... }... } 解释&#xff1a; 属性解释class是我们定义的类型(类)MyClass是我们定义的类的名称 constructor()我们可以在其中初始化对象m…

linux中Java程序调用C程序中方法的实现方式浅析

在Linux中&#xff0c;Java程序可以通过JNI&#xff08;Java Native Interface&#xff09;来调用C程序的方法。 Linux系统环境&#xff0c;Java调用C的主要流程如下&#xff1a; 1、创建Java类文件&#xff0c;如NativeLibrary.java 2、编写Java代码&#xff0c;加载.so共享库…

HTTP 状态码详解及使用场景

目录 1xx 信息性状态码2xx 成功状态码3xx 重定向状态码4xx 客户端错误状态码5xx 服务器错误状态码 HTTP思维导图连接&#xff1a;https://note.youdao.com/s/A7QHimm0 1xx 信息性状态码 100 Continue&#xff1a;表示客户端应继续发送请求的其余部分。 使用场景&#xff1a;客…

20240621在飞凌的OK3588-C开发板的Buildroot系统中集成i2ctool工具

20240621在飞凌的OK3588-C开发板中打开i2ctool工具 2024/6/21 17:44 默认继承的i2c工具&#xff1a; rootrk3588-buildroot:/# rootrk3588-buildroot:/# i2c i2c-stub-from-dump i2cdump i2cset i2cdetect i2cget i2ctransfer rootrk3588-…

机器学习第四十四周周报 SAMformer

文章目录 week44 SAMformer摘要Abstract1. 题目2. Abstract3. 网络架构3.1 问题提出3.2 微型示例3.3 SAMformer 4. 文献解读4.1 Introduction4.2 创新点4.3 实验过程 5. 结论6.代码复现小结参考文献 week44 SAMformer 摘要 本周阅读了题为SAMformer: Unlocking the Potential…