论文:R语言数据分析之机器学习论文

news2024/11/25 4:29:19

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

一、研究背景

全球范围内,乳腺癌是导致癌症发病率和死亡率的主要疾病之一。根据2018年全球癌症统计报告的估计,乳腺癌是女性中第二常见的恶性肿瘤,占所有女性癌症的11.6%以上。它被列为全球癌症死亡原因的第五位,导致全球癌症死亡率的6.6%。乳腺癌导致了大量的公共卫生负担,造成了1480万残疾调整生命年(DALYs)的损失。在发达国家,乳腺癌的发病率显著高于其他国家;全球范围内,高或非常高的人类发展指数(HDI)国家的乳腺癌年龄标准化发病率为每10万名女性54.5例,而低至中等HDI国家的发病率为31.3例。在女性人口中,乳腺癌的死亡率仍然最高,是报告最多的女性癌症死亡原因。

2018年共报告了2088849例新发乳腺癌病例和626679例相关死亡。全球乳腺癌的年龄标准化发病率为每10万人口46.3例,并且在全球范围内显示出几乎四倍的变异(见图1)。最高发病率出现在澳大利亚和新西兰、西欧、北欧和北美,而最低发病率则出现在南亚、中东、东非和西非、东南亚和中美洲。乳腺癌的发病率在西方国家,包括澳大利亚、欧洲和美洲,往往更为普遍。与低人类发展指数(HDI)国家或中等HDI国家相比,乳腺癌在非常高HDI或高HDI国家的发病率更高。

在这里插入图片描述

乳腺癌是全球女性死亡的主要原因之一。它可以分为三类:正常、良性和恶性肿瘤。此外,乳腺癌分为五个阶段(0-IV)。然而,这些阶段是根据肿瘤的大小、是否为侵袭性或非侵袭性癌症、是否影响淋巴结以及是否扩散到其他部位来区分的,尽管随着癌症进展到第四阶段,生存机会会减少[@dey2018review]。因此,乳腺癌的早期发现和分析可以提高生存概率并降低死亡率。乳腺X线摄影(Mammography)、乳腺超声(Breast Ultrasound)、磁共振成像(Magnetic Resonance Imaging, MRI)、正电子发射断层扫描(Positron Emission Tomography, PET)以及计算机断层扫描(Computed Tomography, CT)是一些用于乳腺癌诊断的成像技术。本文使用的数据构建乳腺癌诊断分类模型。该数据集的特征是从乳腺肿块的细针抽吸(Fine Needle Aspirate, FNA)的数字化图像中计算得出。它们描述了图像中存在的细胞核的特征。因此,开发精确的算法以识别和区分乳腺癌显得尤为必要,这将显著提升诊断的准确性。本文将基于随机森林算法构建预测乳腺癌患者的模型。

二、研究意义

在临床上,数据驱动的技术正在逐渐展现出其独特的价值,特别是在癌症诊断与预测方面。基于数字化图像的数据开发,我们构建了一个针对乳腺癌患者的二分类器模型。该预测模型将为乳腺癌的临床诊断提供有力支持,有助于医生更准确地识别乳腺癌患者,为患者带来更好的诊断效果和生活质量。

三、内容

本次论文包含以下内容:

  • 第二章 数据准备

    • 在这里插入图片描述
  • 第三章 特征提取

    • 在这里插入图片描述
  • 第四章 模型构建

    • 在这里插入图片描述
  • 第五章 解释模型

    • 在这里插入图片描述
  • 第六章 总结

四、教程

本教程提供了四种不同的格式,HTML、PDF、word和epub,方便广大读者阅读。

五、获取教程

获取该教程和输入数据见下面链接:

百度网盘链接: https://pan.baidu.com/s/1nIqIn13KGLjuwVeCtW8r4A

提取码(提示:付费获取): 请前往R语言数据分析之机器学习论文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1846071.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微软 Florence-2:多功能视觉模型

微软开发的 Florence-2 系列模型,使用提示(prompt-based approach)来处理不同的视觉任务。 通过改变提示,模型可以执行不同的任务,例如: 描述(Caption)详细描述(Detail…

代码随想录算法训练营第二十八天

题目:134. 加油站 暴力方法 暴力的方法很明显就是O(n^2)的,遍历每一个加油站为起点的情况,模拟一圈。 如果跑了一圈,中途没有断油,而且最后油量大于等于0,说明这个起点是ok的。 暴力的方法思路比较简单…

NGINX_十六 nginx 错误页面配置

十六 nginx 错误页面配置 nginx错误页面包括404 403 500 502 503 504等页面,只需要在server中增加以下配置即可: #error_page 404 403 500 502 503 504 /404.html;location /404.html {root /usr/local/nginx/html;}注意: /usr/local…

PostgreSQL性能优化之分区表 #PG培训

在处理大规模数据时,PostgreSQL的性能优化是一个非常重要的话题,其中分区表(Partitioned Tables)是提高查询和数据管理效率的重要手段。本文将详细介绍PostgreSQL分区表的概念、优势、创建与管理方法以及一些常见的优化策略。 #P…

qml:一个基础的界面设计

文章目录 文章说明效果图重要代码说明组件矩形卡片窗口最大化后组件全部居中菜单栏Repeater实现重复8行图片加载直接加载图片文本转图片FluentUI中可供选择的图标 文章说明 qt6.5.3 qml写的一个界面配置设计软件,目前不含任何c代码,纯qml。windoms风格的…

【Java】已解决java.net.HttpRetryException异常

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例 已解决java.net.HttpRetryException异常 在Java的网络编程中,尤其是使用Apache HttpClient或其他类似的HTTP客户端库时,可能会遇到java.net.HttpRetryException异常。这个…

华为200人园区网有线和无线

实验描述: 1 内网有有线业务、内部无线、外部无线三种业误。 2 内网服务器配置静态IP,网关192.168.108.1。 3 sW1和R1之间使用v1an200 192.168.200.9/30 互联。 4 R2向运营商申请企业宽带并获得了1个固定公网IP: 200.1.1.1 子网掩码 255.255.…

VMware虚拟机下载安装Windows Server 2016

「作者简介」:2022年北京冬奥会网络安全中国代表队,CSDN Top100,就职奇安信多年,以实战工作为基础对安全知识体系进行总结与归纳,著作适用于快速入门的 《网络安全自学教程》,内容涵盖系统安全、信息收集等…

Docker常用操作和命令

文章目录 1、卸载旧版本 2、yum安装Docker CE(社区版) 3、添加镜像加速器 4、docker --version 查看docker版本 5、docker info 或 docker system info 显示 Docker 系统的详细信息,包括容器、镜像、网络等 6、docker search 搜索镜像 …

MEMS环境传感器生产测试的挑战与未来趋势

微机电系统 (MEMS) 环境传感器无处不在,默默地支撑着我们日常生活中众多设备的功能。从智能手机和可穿戴设备到智能家居和工业自动化,这些微型产品可以测量温度、压力、湿度和大量其他环境参数。 由于环境监测需求不断增长以及空气质量严格法规的实施&am…

一站式家装服务管理系统的设计

管理员账户功能包括:系统首页,个人中心,管理员管理,装修风格管理,主材管理,用户管理,基础数据管理 前台账户功能包括:系统首页,个人中心,装修风格&#xff0…

极狐GitLab落户香港科学园并成功发布AI产品驭码CodeRider国际版

GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab :https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署…

189.二叉树:将有序数组转换为二叉搜索树(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* Tre…

canvas绘制红绿灯路口(二)

系列文章 canvas绘制红绿灯路口(一) 无图不欢,先上图 优化项: 一:加入人行道红绿信号 二:加入专用车道标识(无方向标识时采用专用车道标识) 三:东南西北四项路口优化绘…

汇凯金业:现货黄金投资平仓策略有哪些

现货黄金作为全球投资者广泛关注与参与的财富增值途径,其双向交易制度为市场参与者在不同行情下提供了盈利的可能。然而,如何在波动的市场中把握最佳的平仓时机,从而最大化收益,是所有投资者心中的疑问。正确的平仓策略可以说是现…

【GD32F303红枫派使用手册】第二十节 SPI-SPI NAND FLASH读写实验

20.1 实验内容 通过本实验主要学习以下内容: SPI通信协议,参考19.2.1东方红开发板使用手册 GD32F303 SPI操作方式,参考19.2.2东方红开发板使用手册 NAND FLASH基本原理 SPI NAND介绍 使用GD32F303 SPI接口实现对GD5F1GQ5UEYIGY的读写…

深度学习 --- stanford cs231学习笔记四(训练神经网络的几个重要组成部分之一,激活函数)

训练神经网络的几个重要组成部分 一 1,激活函数(activation functions) 激活函数是神经网络之于线性分类器的最大进步,最大贡献,即,引入了非线性。这些非线性函数可以被分成两大类,饱和非线性函…

Nacos 2.x 系列【17】健康保护阈值

文章目录 1. 概述2. 案例演示2.1 设置阈值2.2 未触发2.3 触发 1. 概述 Nacos 支持通过配置健康保护阈值(ProtectThreshold)防止因过多实例故障,导致所有流量全部流入剩余实例,继而造成流量压力将剩余实例被压垮形成的雪崩效应。 …

神经网络模型的量化简介(工程版)

1.量化简介 模型量化(Model Quantization)是深度学习中一种优化技术,旨在减少模型的计算和存储需求,同时尽量保持模型的性能。具体来说,模型量化通过将模型的权重和激活值从高精度(通常是32位浮点数&#…

昇思25天学习打卡营第3天 | 数据集

内容介绍:数据是深度学习的基础,高质量的数据输入将在整个深度神经网络中起到积极作用。MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)实现高效的数据预处理。其中Dataset是Pipeline的起始,用于…